IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2175-d1387672.html
   My bibliography  Save this article

Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network

Author

Listed:
  • Yujie Zhang

    (Center for Wind Energy, Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA)

  • Nasser Kehtarnavaz

    (Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA)

  • Mario Rotea

    (Center for Wind Energy, Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA)

  • Teja Dasari

    (Xcel Energy, Minneapolis, MN 55401, USA)

Abstract

Icing on the blades of wind turbines during winter seasons causes a reduction in power and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network is considered as the model to predict icing from the SCADA data time series. All aspects of the icing prediction framework are described, including the necessary data preprocessing, the labeling of SCADA data for icing conditions, the selection of informative icing features or variables in SCADA data, and the design of a Temporal Convolutional Network as the prediction model. Two performance metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind turbine, the model achieves an average prediction accuracy of 77.6 % for future times of up to 48 h.

Suggested Citation

  • Yujie Zhang & Nasser Kehtarnavaz & Mario Rotea & Teja Dasari, 2024. "Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network," Energies, MDPI, vol. 17(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2175-:d:1387672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    2. Swenson, Lauren & Gao, Linyue & Hong, Jiarong & Shen, Lian, 2022. "An efficacious model for predicting icing-induced energy loss for wind turbines," Applied Energy, Elsevier, vol. 305(C).
    3. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    2. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    3. Mounir Alliche & Redha Rebhi & Noureddine Kaid & Younes Menni & Houari Ameur & Mustafa Inc & Hijaz Ahmad & Giulio Lorenzini & Ayman A. Aly & Sayed K. Elagan & Bassem F. Felemban, 2021. "Estimation of the Wind Energy Potential in Various North Algerian Regions," Energies, MDPI, vol. 14(22), pages 1-13, November.
    4. Luo, Keyu & Ye, Yong, 2024. "How responsive are retail electricity prices to crude oil fluctuations in the US? Time-varying and asymmetric perspectives," Research in International Business and Finance, Elsevier, vol. 69(C).
    5. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    6. Yujie Zhang & Mario Rotea & Nasser Kehtarnavaz, 2024. "Wind Farm Prediction of Icing Based on SCADA Data," Energies, MDPI, vol. 17(18), pages 1-16, September.
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2175-:d:1387672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.