IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921010941.html
   My bibliography  Save this article

Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks

Author

Listed:
  • Zhang, Tongtong
  • She, Xiaohui
  • You, Zhanping
  • Zhao, Yanqi
  • Fan, Hongjun
  • Ding, Yulong

Abstract

Liquid Air Energy Storage (LAES) uses off-peak and/or renewable electricity to produce liquid air (charging). When needed, the liquid air expands in an expander to generate electricity (discharging). The produced liquid air can be transported from renewable energy rich areas to end-use sites using existing road, rail and shipping infrastructures. The discharging process occurs at the end-use sites in this case and is therefore decoupled from the charging process (denoted as decoupled LAES). One of key challenges associated with the decoupled LAES is the recovery of cryogenic energy released by liquid air during the discharging process. Here we propose a cryogenic thermoelectric generation (Cryo-TEG) method to effectively recover the cryogenic energy. Both thermodynamic and economic analyses are carried out on the Cryo-TEG. The results are compared with conventional cryogenic Rankine cycles (Cryo-RC). Additionally, system performance of the decoupled LAES integrated with the Cryo-TEG is also evaluated for combined power and cooling supply. The results show that the Cryo-TEG has a thermal efficiency of ∼ 9%, which is much lower than the Cryo-RC (∼39.5%). However, the Cryo-TEG gives a much better economic performance especially as the cooling capacity of liquid nitrogen is below 8.6 MW: the levelized cost of electricity of the Cryo-TEG could be as low as 0.0218 $/kWh, ∼4 times cheaper than that of the Cryo-RC. This demonstrates that the Cryo-TEG is more favourable for cryogenic energy recovery in the small-scale decoupled LAES. With the Cryo-TEG, the decoupled LAES system could achieve an electrical round trip efficiency of ∼ 29% and a combined cooling and power efficiency of ∼ 50%.

Suggested Citation

  • Zhang, Tongtong & She, Xiaohui & You, Zhanping & Zhao, Yanqi & Fan, Hongjun & Ding, Yulong, 2022. "Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010941
    DOI: 10.1016/j.apenergy.2021.117749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
    2. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    3. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    4. Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
    5. Sanghyun Che & Juwon Kim & Daejun Chang, 2021. "Liquid Air as an Energy Carrier for Liquefied Natural Gas Cold Energy Distribution in Cold Storage Systems," Energies, MDPI, vol. 14(2), pages 1-23, January.
    6. Hsiao, Y.Y. & Chang, W.C. & Chen, S.L., 2010. "A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine," Energy, Elsevier, vol. 35(3), pages 1447-1454.
    7. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    8. Weng, Chien-Chou & Lin, Ming-Chyuan & Huang, Mei-Jiau, 2016. "A waste cold recovery from the exhausted cryogenic nitrogen by using thermoelectric power generator," Energy, Elsevier, vol. 103(C), pages 385-396.
    9. Le, Si & Lee, Jui-Yuan & Chen, Cheng-Liang, 2018. "Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy," Energy, Elsevier, vol. 152(C), pages 770-787.
    10. Karki, Saroj & Haapala, Karl R. & Fronk, Brian M., 2019. "Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers," Applied Energy, Elsevier, vol. 254(C).
    11. Xie, Chunping & Hong, Yan & Ding, Yulong & Li, Yongliang & Radcliffe, Jonathan, 2018. "An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study," Applied Energy, Elsevier, vol. 225(C), pages 244-257.
    12. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    13. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    14. Tafone, Alessio & Dal Magro, Fabio & Romagnoli, Alessandro, 2018. "Integrating an oxygen enriched waste to energy plant with cryogenic engines and Air Separation Unit: Technical, economic and environmental analysis," Applied Energy, Elsevier, vol. 231(C), pages 423-432.
    15. Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
    16. He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
    17. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    18. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    19. Ahmad, Abdalqader & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Air conditioning and power generation for residential applications using liquid nitrogen," Applied Energy, Elsevier, vol. 184(C), pages 630-640.
    20. Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
    21. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    22. Li, Yongliang & Wang, Xiang & Jin, Yi & Ding, Yulong, 2012. "An integrated solar-cryogen hybrid power system," Renewable Energy, Elsevier, vol. 37(1), pages 76-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Cui, Xiangna & Chen, Xi & Gao, Zhongyang, 2024. "Research on the power generation performance and optimization of thermoelectric generators for recycling remaining cold energy," Energy, Elsevier, vol. 299(C).
    3. Wen, Na & Tan, Hongbo & Pedersen, Simon & Yang, Zhenyu & Qin, Xiaoqiao, 2023. "Thermodynamic and economic analyses of the integrated cryogenic energy storage and gas power plant system," Renewable Energy, Elsevier, vol. 218(C).
    4. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
    3. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    4. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    6. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    7. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Chaitanya, Vuppanapalli & Narasimhan, S. & Venkatarathnam, G., 2023. "Optimization of a Solvay cycle-based liquid air energy storage system," Energy, Elsevier, vol. 283(C).
    9. Wang, Kaiwen & Tong, Lige & Yin, Shaowu & Yang, Yan & Zhang, Peikun & Liu, Chuanping & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Novel ASU–LAES system with flexible energy release: Analysis of cycle performance, economics, and peak shaving advantages," Energy, Elsevier, vol. 288(C).
    10. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    11. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    12. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    13. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    14. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    15. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. He, Xiufen & Liu, Yunong & Rehman, Ali & Wang, Li, 2022. "Feasibility and performance analysis of a novel air separation unit with energy storage and air recovery," Renewable Energy, Elsevier, vol. 195(C), pages 598-619.
    17. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    18. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    19. Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).
    20. Bernagozzi, Marco & Panesar, Angad S. & Morgan, Robert, 2019. "Molten salt selection methodology for medium temperature liquid air energy storage application," Applied Energy, Elsevier, vol. 248(C), pages 500-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.