IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011375.html
   My bibliography  Save this article

Post-metering value-added services for low voltage electricity users: Lessons learned from the Italian experience of CHAIN 2

Author

Listed:
  • Serra, Daniele
  • Mardero, Daniele
  • Di Stefano, Luca
  • Grillo, Samuele

Abstract

Electrical energy consumption data accessibility for low voltage end users is one of the pillars of smart grids. In some countries, despite the presence of smart meters, a fragmentary data availability and/or the lack of standardization hinders the creation of post-metering value-added services and confines such innovative solutions to the prototypal and experimental level. We take inspiration from the technology adopted in Italy, where the national regulatory authority actively supported the definition of a solution agreed upon by all the involved stakeholders. In this context, smart meters are enabled to convey data to low voltage end users through a power line communication channel (CHAIN 2) in near real-time. The aim of this paper is twofold. On the one hand, it describes the proof of concept that the channel underwent and its subsequent validation (with performances nearing 99% success rate). On the other hand, it defines a classification framework (I2MA) for post-metering value-added services, in order to categorize each use case based on both level of service and expected benefits, and understand its maturity level. As an example, we apply the methodology to the 16 use cases defined in Italy. The lessons learned from the regulatory, technological, and functional approach of the Italian experience bring us to the provision of recommendations for researchers and industry experts. In particular, we argue that a well-functioning post-metering value-added services’ market can flourish when: (i) distribution system operators certify the measurements coming from smart meters; (ii) national regulatory authorities support the technological innovation needed for setting up this market; and (iii) service providers create customer-oriented solutions based on smart meters’ data.

Suggested Citation

  • Serra, Daniele & Mardero, Daniele & Di Stefano, Luca & Grillo, Samuele, 2021. "Post-metering value-added services for low voltage electricity users: Lessons learned from the Italian experience of CHAIN 2," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011375
    DOI: 10.1016/j.apenergy.2021.117806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011375
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    2. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    3. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    4. Kapustin, Nikita O. & Grushevenko, Dmitry A., 2020. "Long-term electric vehicles outlook and their potential impact on electric grid," Energy Policy, Elsevier, vol. 137(C).
    5. Erlinghagen, Sabine & Lichtensteiger, Bill & Markard, Jochen, 2015. "Smart meter communication standards in Europe – a comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1249-1262.
    6. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    7. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    8. Jacqueline Corbett, 2013. "Using information systems to improve energy efficiency: Do smart meters make a difference?," Information Systems Frontiers, Springer, vol. 15(5), pages 747-760, November.
    9. James Carroll & Se n Lyons & Eleanor Denny, 2013. "Reducing Electricity Demand through Smart Metering: The Role of Improved Household Knowledge," Trinity Economics Papers tep0313, Trinity College Dublin, Department of Economics.
    10. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Smart meters for power grid: Challenges, issues, advantages and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2736-2742, August.
    11. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    12. Benjamin Völker & Andreas Reinhardt & Anthony Faustine & Lucas Pereira, 2021. "Watt’s up at Home? Smart Meter Data Analytics from a Consumer-Centric Perspective," Energies, MDPI, vol. 14(3), pages 1-21, January.
    13. Alessandro Pitì & Giacomo Verticale & Cristina Rottondi & Antonio Capone & Luca Lo Schiavo, 2017. "The Role of Smart Meters in Enabling Real-Time Energy Services for Households: The Italian Case," Energies, MDPI, vol. 10(2), pages 1-25, February.
    14. Guido Pepermans, 2019. "European energy market liberalization: experiences and challenges," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 3-26, January.
    15. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    2. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    3. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
    4. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    5. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    6. Aslam, Waleed & Soban, Muhammad & Akhtar, Farwa & Zaffar, Nauman A., 2015. "Smart meters for industrial energy conservation and efficiency optimization in Pakistan: Scope, technology and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 933-943.
    7. Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
    8. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    9. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Modawy Adam Ali Abdalla & Wang Min & Omer Abbaker Ahmed Mohammed, 2020. "Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile," Energies, MDPI, vol. 13(23), pages 1-18, December.
    11. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    12. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    13. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    14. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    15. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    16. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    17. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Najam Ul Hasan & Waleed Ejaz & Mahin K. Atiq & Hyung Seok Kim, 2013. "Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters," Energies, MDPI, vol. 6(9), pages 1-18, September.
    19. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    20. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.