IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipas0306261920315609.html
   My bibliography  Save this article

An incentive-compatible distributed integrated energy market mechanism design with adaptive robust approach

Author

Listed:
  • Yao, Yunting
  • Gao, Ciwei
  • Lai, Kexing
  • Chen, Tao
  • Yang, Jianlin

Abstract

The transactive energy framework was proposed in the recent years to enable the distributed energy trading among distributed integrated energy market. However, sharing energy might lead to profit loss to some participants. As a result, the incentive of joining the coalition for some participants will be diminished. Currently, researches have focused on encouraging participants to share energy by offering compensation, but the incentive compatibility is not modeled effectively. To address this problem, this paper, for the first time, develops an optimization model for the market organizer (i.e., the integrated energy service provider) to allocate the cooperative surplus according to the market contribution while the crucial attributes of the market mechanism are ensured (i.e., social welfare maximization, individual rationality, cost recovery and incentive compatibility), so that market participants can earn their fair shares and profit reductions can be circumvented. On the other hand, the problem caused by the highly uncertain and intermittent power outputs from distributed renewable energy resources imposes additional challenge for organizing a transactive energy market, which calls for the exploitations of effective algorithms to identify representative scenarios. In this paper, adaptive robust optimization algorithm is adopted to identify the scenarios that enhances conservativeness and economy and improves the efficiency of market clearing process, which transforms the problem into a tri-level model and solves by iterating between internal and external formulations. Simulation results show that social welfare increases $2,751 compared with independent operation mode, and calculation efficiency can be improved by 71.55% utilizing the ARO method.

Suggested Citation

  • Yao, Yunting & Gao, Ciwei & Lai, Kexing & Chen, Tao & Yang, Jianlin, 2021. "An incentive-compatible distributed integrated energy market mechanism design with adaptive robust approach," Applied Energy, Elsevier, vol. 282(PA).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315609
    DOI: 10.1016/j.apenergy.2020.116155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    3. Mahboubi-Moghaddam, Esmaeil & Nayeripour, Majid & Aghaei, Jamshid, 2016. "Reliability constrained decision model for energy service provider incorporating demand response programs," Applied Energy, Elsevier, vol. 183(C), pages 552-565.
    4. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, December.
    5. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    6. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    7. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Zhang, Zhihui & Jing, Rui & Lin, Jian & Wang, Xiaonan & van Dam, Koen H. & Wang, Meng & Meng, Chao & Xie, Shan & Zhao, Yingru, 2020. "Combining agent-based residential demand modeling with design optimization for integrated energy systems planning and operation," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    2. Zeynali, Saeed & Nasiri, Nima & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2022. "A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets," Applied Energy, Elsevier, vol. 324(C).
    3. Zheng, Weiye & Xu, Siyu & Liu, Jiawei & Zhu, Jizhong & Luo, Qingju, 2023. "Participation of strategic district heating networks in electricity markets: An arbitrage mechanism and its equilibrium analysis," Applied Energy, Elsevier, vol. 350(C).
    4. Najafi-Ghalelou, Afshin & Khorasany, Mohsen & Razzaghi, Reza, 2024. "Maximizing social welfare of prosumers in neighborhood battery-enabled distribution networks," Applied Energy, Elsevier, vol. 359(C).
    5. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    2. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    3. Jieran Feng & Junpei Nan & Chao Wang & Ke Sun & Xu Deng & Hao Zhou, 2022. "Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory," Energies, MDPI, vol. 15(10), pages 1-24, May.
    4. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    5. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    6. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    7. Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
    8. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    9. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    10. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    11. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    12. Wen, Xin & Abbes, Dhaker & Francois, Bruno, 2021. "Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 116-128.
    13. Josue Campos do Prado & Wei Qiao & Liyan Qu & Julio Romero Agüero, 2019. "The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework," Energies, MDPI, vol. 12(3), pages 1-24, February.
    14. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    15. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    16. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    17. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    18. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    19. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    20. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.