IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314185.html
   My bibliography  Save this article

Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future

Author

Listed:
  • Sui, Yi
  • Zhang, Haoran
  • Shang, Wenlong
  • Sun, Rencheng
  • Wang, Changying
  • Ji, Jun
  • Song, Xuan
  • Shao, Fengjing

Abstract

Emission benefits of transit buses depend on ridership. Declines in ridership caused by COVID-19 leads uncertainty about the emission reduction capacity of buses. This paper provides a method framework for analyzing spatio-temporal emission patterns of buses in combination with real-time ridership and potential emission changes in the post-COVID-19 future. Based on GPS trajectory and Smart Card data of 2056 buses from 278 routes covering 1.5 million ridership in Qingdao, China, spatio-temporal emissions characteristics of buses are studied. 7589 taxis with 0.2 million passengers’ trips are used for acquiring private cars’ emissions to evaluate the emissions difference between buses and cars. Empirical results show that the average difference between buses and cars with 2 persons can reach up to 117 g/km-person during 7:00–8:59 and 115 g/km-person during 17:00–18:59. However, buses have various emission benefits around the city at different periods. A double increase in emissions during non-rush hours can be observed compared with rush hours. 224 online survey data are used to study the potential ridership reduction trend in post-COVID-19. Results show that 56.3% of respondents would decrease the usage of buses in the post-COVID-19 future. Based on this figure, our analysis shows that per kilometer-person emissions of buses are higher than cars during non-rush hours, however, still lower than cars during rush hours. We conclude that when ridership reduces by more than 40%, buses cannot be “greener” travel modal than cars as before. Finally, several feasible policies are suggested for this potential challenge. Our study provides convincing evidence for understanding the emission patterns of buses, to support better buses investment decisions and promotion on eco-friendly public transport service in the post-COVID-19 future.

Suggested Citation

  • Sui, Yi & Zhang, Haoran & Shang, Wenlong & Sun, Rencheng & Wang, Changying & Ji, Jun & Song, Xuan & Shao, Fengjing, 2020. "Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314185
    DOI: 10.1016/j.apenergy.2020.115966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Haywood, Luke & Koning, Martin & Monchambert, Guillaume, 2017. "Crowding in public transport: Who cares and why?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 215-227.
    3. Xiaonian Shan & Xiaohong Chen & Wenjian Jia & Jianhong Ye, 2019. "Evaluating Urban Bus Emission Characteristics Based on Localized MOVES Using Sparse GPS Data in Shanghai, China," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    4. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
    5. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    6. Yu, Qian & Li, Tiezhu & Li, Hu, 2016. "Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving," Applied Energy, Elsevier, vol. 161(C), pages 101-111.
    7. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    8. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    2. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    3. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    4. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    5. Chen, Feng & Peng, Haorong & Ding, Wenlong & Ma, Xiaoxiang & Tang, Daizhong & Ye, Yipeng, 2021. "Customized bus passenger boarding and deboarding planning optimization model with the least number of contacts between passengers during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. M. A. Hannan & M. S. Abd Rahman & Ali Q. Al-Shetwi & R. A. Begum & Pin Jern Ker & M. Mansor & M. S. Mia & M. J. Hossain & Z. Y. Dong & T. M. I. Mahlia, 2022. "Impact Assessment of COVID-19 Severity on Environment, Economy and Society towards Affecting Sustainable Development Goals," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    7. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    8. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    9. Schulte-Fischedick, Marta & Shan, Yuli & Hubacek, Klaus, 2021. "Implications of COVID-19 lockdowns on surface passenger mobility and related CO2 emission changes in Europe," Applied Energy, Elsevier, vol. 300(C).
    10. Fan, Huiying & Lu, Hongyu & Guin, Angshuman & Watkins, Kari E & Guensler, Randall, 2022. "Combined Effect of Changes in Transit Service and Changes in Occupancy on Per-Passenger Energy Consumption," Institute of Transportation Studies, Working Paper Series qt2x1320p5, Institute of Transportation Studies, UC Davis.
    11. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    12. Paolo Zeppini & Jeroen C.J.M. van den Bergh, 2023. "Does COVID-19 Help or Harm the Climate? Modelling Long-run Emissions under Climate and Stimulus Policies," GREDEG Working Papers 2023-09, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    13. Marcin Malec & Grzegorz Kinelski & Marzena Czarnecka, 2021. "The Impact of COVID-19 on Electricity Demand Profiles: A Case Study of Selected Business Clients in Poland," Energies, MDPI, vol. 14(17), pages 1-17, August.
    14. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    15. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    16. Ayyoob Sharifi & Amir Reza Khavarian-Garmsir & Rama Krishna Reddy Kummitha, 2021. "Contributions of Smart City Solutions and Technologies to Resilience against the COVID-19 Pandemic: A Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    17. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    4. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    5. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    6. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    7. Tianxing Dai & Brian D. Taylor, 2023. "Three’s a crowd? Examining evolving public transit crowding standards amidst the COVID-19 pandemic," Public Transport, Springer, vol. 15(2), pages 321-341, June.
    8. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    9. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    10. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    11. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    12. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    13. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    14. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    15. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    16. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    17. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    20. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.