IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics030626192031360x.html
   My bibliography  Save this article

Oxy-cracking technique for producing non-combustion products from residual feedstocks and cleaning up wastewater

Author

Listed:
  • Manasrah, Abdallah D.
  • Nassar, Nashaat N.

Abstract

The oil industry faces economic and environmental challenges due to its energy- and water-intensive processes. Surplus residual feedstocks and the water produced via heavy oil upgrading and processing are among the most challenging problems in the oil industry. Utilization these waste materials and a lack of efficient technologies to treat them are the main challenges causing the industry to consider them as waste materials. Existing technologies only add a small value, require high capital investment, and generate high greenhouse gas emissions. Therefore, in this study, we review and highlight the major findings regarding the oxy-cracking process, which is introduced as an alternative beyond combustion, as an environmentally friendly technique for converting these feedstocks into value-added products and also enhances the recyclability of wastewater. Through these residual feedstocks are partially oxidized in basic aqueous media at mild operational temperatures (150–230 °C) and pressures (3.4–5.2 MPa). Several operating conditions have been reported to optimize the conversion and selectivity of the products, and the results showed that the temperature and residence time have significant impacts on the yield and environmental impact. The experimental findings were validated with theoretical calculations, which provided insights on understanding the kinetic behavior based on the radical mechanism. The characterization findings revealed that the oxy-cracking could be a platform for a wide range of products such as humic acids, clean fuel, and carbon nanomaterials, and to recover valuable metals. Moreover, this process could be implemented for treatment of oil sand processes affected water and for decomposing emerging pharmaceuticals.

Suggested Citation

  • Manasrah, Abdallah D. & Nassar, Nashaat N., 2020. "Oxy-cracking technique for producing non-combustion products from residual feedstocks and cleaning up wastewater," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s030626192031360x
    DOI: 10.1016/j.apenergy.2020.115890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031360X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lima, Ana T. & Mitchell, Kristen & O’Connell, David W. & Verhoeven, Jos & Van Cappellen, Philippe, 2016. "The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation," Environmental Science & Policy, Elsevier, vol. 66(C), pages 227-233.
    2. Khojasteh Salkuyeh, Yaser & Adams, Thomas A., 2015. "Integrated petroleum coke and natural gas polygeneration process with zero carbon emissions," Energy, Elsevier, vol. 91(C), pages 479-490.
    3. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    4. Chmielniak, Tomasz & Sciazko, Marek, 2003. "Co-gasification of biomass and coal for methanol synthesis," Applied Energy, Elsevier, vol. 74(3-4), pages 393-403, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
    2. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    3. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    4. Adnan Khurshid & Abdur Rauf & Sadia Qayyum & Adrian Cantemir Calin & WenQi Duan, 2023. "Green innovation and carbon emissions: the role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—evidence from Central-Eastern Europe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8777-8798, August.
    5. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    6. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    7. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    8. Burak Atakan, 2019. "Compression–Expansion Processes for Chemical Energy Storage: Thermodynamic Optimization for Methane, Ethane and Hydrogen," Energies, MDPI, vol. 12(17), pages 1-21, August.
    9. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    10. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    11. Sonja Kivinen & Kaarina Vartiainen & Timo Kumpula, 2018. "People and Post-Mining Environments: PPGIS Mapping of Landscape Values, Knowledge Needs, and Future Perspectives in Northern Finland," Land, MDPI, vol. 7(4), pages 1-23, December.
    12. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    13. Zhu, Penghu & Lin, Boqiang, 2022. "Do the elderly consume more energy? Evidence from the retirement policy in urban China," Energy Policy, Elsevier, vol. 165(C).
    14. Rahimpour, M.R. & Mazinani, S. & Vaferi, B. & Baktash, M.S., 2011. "Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis," Applied Energy, Elsevier, vol. 88(1), pages 41-51, January.
    15. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    16. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    17. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    18. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    19. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    20. Huping Hou & Chen Wang & Zhongyi Ding & Shaoliang Zhang & Yongjun Yang & Jing Ma & Fu Chen & Jinrong Li, 2018. "Variation in the Soil Microbial Community of Reclaimed Land over Different Reclamation Periods," Sustainability, MDPI, vol. 10(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s030626192031360x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.