IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920305742.html
   My bibliography  Save this article

On energy and climate change policies: The impact of baseline projections

Author

Listed:
  • Nong, Duy
  • Simshauser, Paul

Abstract

As a result of statistical contingencies, research frequently employs aged databases to examine the impacts of energy and climate change policies in contemporary situations, or in forward timeframes out to 2050 or even 2100. These forward-looking studies require a base case scenario in order to assess the impacts of a policy. In this article, we hypothesise how a baseline is ‘rolled forward’, and specifically, how this process can materially alter the apparent performance of an energy or climate change policy. In the literature, we find a variety of methods are used to update databases and project forward base case scenarios, some which scale an entire economy to a general trend of growth, whereas others account for sectoral differences. We extend a global electricity-detailed model (GTAP-E-Power) to examine our hypothesis. We evaluate impacts of a world-wide carbon tax policy ($50/t of carbon dioxide equivalent) using three different baselines, with varying levels of specificity relating to macroeconomic projections and sectoral developments and constraints. Results show the impact on sectors and the overall economy in all countries are highly diverse when different baselines are used. For example, fossil-based power output in the United States declines between 36.7 and 65.5% while Real GDP in China declines between −0.66 and −1.54% for an identical policy, depending on which baseline methodology is used. Above all, we find that stronger development of renewable energy and technology in the baselines results in lower costs of a climate change mitigation policy.

Suggested Citation

  • Nong, Duy & Simshauser, Paul, 2020. "On energy and climate change policies: The impact of baseline projections," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920305742
    DOI: 10.1016/j.apenergy.2020.115062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920305742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mason-D'Croz, Daniel & Sulser, Timothy B. & Wiebe, Keith & Rosegrant, Mark W. & Lowder, Sarah K. & Nin-Pratt, Alejandro & Willenbockel, Dirk & Robinson, Sherman & Zhu, Tingju & Cenacchi, Nicola & Duns, 2019. "Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger," World Development, Elsevier, vol. 116(C), pages 38-53.
    2. Adams, Philip D. & Parmenter, Brian R., 2013. "Computable General Equilibrium Modeling of Environmental Issues in Australia," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 553-657, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pothen, Frank & Hübler, Michael, 2021. "A forward calibration method for analyzing energy policy in new quantitative trade models," Energy Economics, Elsevier, vol. 100(C).
    2. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    3. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).
    4. Jingzhi Zhu & Yuhuan Zhao & Lu Zheng, 2024. "The Impact of the EU Carbon Border Adjustment Mechanism on China’s Exports to the EU," Energies, MDPI, vol. 17(2), pages 1-18, January.
    5. Marina Virginia Stefan & Simona-Vasilica Oprea & Adela Bara, 2024. "Understanding Citizens’ Attitudes Towards Energy and Climate Issues. A Comprehensive Survey Analysis," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 328-338, August.
    6. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    7. Zhaojun Wang & Duy Nong & Amanda M. Countryman & James J. Corbett & Travis Warziniack, 2020. "Potential impacts of ballast water regulations on international trade, shipping patterns, and the global economy: An integrated transportation and economic modeling assessment," Papers 2008.11334, arXiv.org.
    8. Azam Ghezelbash & Vahid Khaligh & Seyed Hamed Fahimifard & J. Jay Liu, 2023. "A Comparative Perspective of the Effects of CO 2 and Non-CO 2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment," Energies, MDPI, vol. 16(7), pages 1-20, March.
    9. Johannes Ziesmer & Ding Jin & Sneha D Thube & Christian Henning, 2023. "A Dynamic Baseline Calibration Procedure for CGE models," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1331-1368, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    2. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2022. "Resource Conservation as the Main Factor in Increasing the Resource Efficiency of Russian Gas Companies," Resources, MDPI, vol. 11(12), pages 1-14, December.
    3. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    4. Ku McMahan & Saad Usmani, 2022. "The Economic Benefits of Supporting Private Social Enterprise at the Nexus of Water and Agriculture: A Social Rate of Return Analysis of the Securing Water for Food Grand Challenge for Development," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    5. Vladimir Zybatov, 2018. "Strategic Planning of Energy-Efficient Development of a Region of the Russian Federation," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 941-954.
    6. Kozicka, Marta & Gotor, Elisabetta & Ocimati, Walter & de Jager, Tamar & Kikulwe, Enoch & Groot, Jeroen C.J., 2020. "Responding to future regime shifts with agrobiodiversity: A multi-level perspective on small-scale farming in Uganda," Agricultural Systems, Elsevier, vol. 183(C).
    7. Philip D. Adams & Brian R. Parmenter & George Verikios, 2014. "An Emissions Trading Scheme for Australia: National and Regional Impacts," The Economic Record, The Economic Society of Australia, vol. 90(290), pages 316-344, September.
    8. George Philippidis & Robert M’barek & Emanuele Ferrari, 2016. "Drivers of the European Bioeconomy in Transition (BioEconomy2030): an exploratory, model-based assessment," JRC Research Reports JRC98160, Joint Research Centre.
    9. Herdis Herdiansyah & Ernoiz Antriyandarti & Amrina Rosyada & Nor Isnaeni Dwi Arista & Tri Edhi Budhi Soesilo & Ninin Ernawati, 2023. "Evaluation of Conventional and Mechanization Methods towards Precision Agriculture in Indonesia," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    10. Laura Cavalli & Mia Alibegovic & Edward Cruickshank & Luca Farnia & Ilenia G. Romani, 2023. "The impact of EU Structural Funds on the national sustainable development strategy: a methodological application," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 10(1), pages 52-69, December.
    11. CGIAR Research Program on Policies, Institutions, and Markets, 2021. "Technological innovation and sustainable intensification: Highlights, lessons learned, and priorities for One CGIAR," PIM flagship insights 1, International Food Policy Research Institute (IFPRI).
    12. Jessica A. Bohlmann & Heinrich R. Bohlmann & Roula Inglesi-Lotz, 2015. "An Economy-Wide Evaluation of New Power Generation in South Africa: The Case of Kusile and Medupi," Working Papers 201540, University of Pretoria, Department of Economics.
    13. Liu, Xianglong Locky & Nassios, Jason & Giesecke, James, 2024. "To tax or to spend? Modelling tax policy responses to oil price shocks," Energy Policy, Elsevier, vol. 185(C).
    14. Gheorghe Hurduzeu & Radu Lucian Pânzaru & Dragoș Mihai Medelete & Andi Ciobanu & Constanța Enea, 2022. "The Development of Sustainable Agriculture in EU Countries and the Potential Achievement of Sustainable Development Goals Specific Targets (SDG 2)," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    15. Sulser, Timothy & Wiebe, Keith D. & Dunston, Shahnila & Cenacchi, Nicola & Nin-Pratt, Alejandro & Mason-D’Croz, Daniel & Robertson, Richard D. & Willenbockel, Dirk & Rosegrant, Mark W., 2021. "Climate change and hunger: Estimating costs of adaptation in the agrifood system," Food policy reports 9780896294165, International Food Policy Research Institute (IFPRI).
    16. Alejandro Nin‐Pratt, 2021. "Agricultural R&D investment intensity: A misleading conventional measure and a new intensity index," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 317-328, March.
    17. Wang, Yue & Kim, John & Poletti, Stephen & Sharp, Basil, 2018. "Endogenous carbon price in New Zealand: A forest-CGE analysis," Conference papers 330185, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. David R Just, 2023. "On the policy relevance of agricultural economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1256-1276.
    19. Kwaw-Nimeson, Enoch & Tian, Ze, 2021. "The impact of agricultural producer price on sustainable food security in Africa – a system GMM approach," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 7(3), September.
    20. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2023. "Digital Management of Resource Efficiency of Fuel and Energy Companies in a Circular Economy," Energies, MDPI, vol. 16(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920305742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.