IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920303755.html
   My bibliography  Save this article

Maximizing energy efficiency of islanded micro water-energy nexus using co-optimization of water demand and energy consumption

Author

Listed:
  • Moazeni, Faegheh
  • Khazaei, Javad
  • Pera Mendes, Joao Paulo

Abstract

Water and energy systems are interdependent. However, at national and international levels, energy and water systems have been designed individually. To optimize the use of energy resources and have a more sustainable energy processes, a new formulation is proposed in this paper to optimize the energy consumption of water-energy systems at a community scale. More specifically, single-objective, bi-level, and co-optimization models are developed to minimize the energy consumption of a micro water distribution network concerning three scenarios: (1) standalone operation; (2) integrated with a grid-connected micro energy system with no storage unit; and (3) integrated with an off-grid micro energy system with storage units. In all conditions, a mixed integer nonlinear programming formulation is used to solve the optimization problems. Pump operations with varying statuses, flow rates, and speeds are contemplated to formulate the energy consumption of the micro water, considering a quadratic function for the pump’s energy head changing with flow rate. The micro water network is designed based on a diurnal pattern of water demand for a network including 1 reservoir, 1 water tank, 6 nodes, and 2 pumps. The micro energy system includes a microgrid with a combined heat and power plant (CHP), diesel (DS) generator, natural gas (NG) generator, renewable sources (solar and wind), and energy storage units. Several case studies are carried out to compare the performance of developed optimization models.

Suggested Citation

  • Moazeni, Faegheh & Khazaei, Javad & Pera Mendes, Joao Paulo, 2020. "Maximizing energy efficiency of islanded micro water-energy nexus using co-optimization of water demand and energy consumption," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303755
    DOI: 10.1016/j.apenergy.2020.114863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    2. Yungyu Chang & Gyewoon Choi & Juhwan Kim & Seongjoon Byeon, 2018. "Energy Cost Optimization for Water Distribution Networks Using Demand Pattern and Storage Facilities," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    3. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    4. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    5. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    2. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal energy management of water-energy networks via optimal placement of pumps-as-turbines and demand response through water storage tanks," Applied Energy, Elsevier, vol. 283(C).
    3. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    4. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal design and operation of an islanded water-energy network including a combined electrodialysis-reverse osmosis desalination unit," Renewable Energy, Elsevier, vol. 167(C), pages 395-408.
    5. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    7. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    8. Moazeni, Faegheh & Khazaei, Javad, 2020. "Dynamic economic dispatch of islanded water-energy microgrids with smart building thermal energy management system," Applied Energy, Elsevier, vol. 276(C).
    9. Manuel Parraga & José Vuelvas & Benjamín González-Díaz & Leonardo Rodríguez-Urrego & Arturo Fajardo, 2024. "A Systematic Review of Isolated Water and Energy Microgrids: Infrastructure, Optimization of Management Strategies, and Future Trends," Energies, MDPI, vol. 17(12), pages 1-28, June.
    10. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky & Al-Awami, Ali Taleb, 2023. "Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid," Applied Energy, Elsevier, vol. 335(C).
    11. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Chen, Chen & Zhang, Xiaodong & Zhang, Huayong & Cai, Yanpeng & Wang, Shuguang, 2022. "Managing water-energy-carbon nexus in integrated regional water network planning through graph theory-based bi-level programming," Applied Energy, Elsevier, vol. 328(C).
    13. Sharma, Santosh & Li, Qifeng, 2024. "Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm," Applied Energy, Elsevier, vol. 359(C).
    14. Goodarzi, Mostafa & Li, Qifeng, 2022. "Evaluate the capacity of electricity-driven water facilities in small communities as virtual energy storage," Applied Energy, Elsevier, vol. 309(C).
    15. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    16. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Moazeni, Faegheh & Khazaei, Javad, 2021. "Co-optimization of wastewater treatment plants interconnected with smart grids," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    3. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal energy management of water-energy networks via optimal placement of pumps-as-turbines and demand response through water storage tanks," Applied Energy, Elsevier, vol. 283(C).
    4. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal design and operation of an islanded water-energy network including a combined electrodialysis-reverse osmosis desalination unit," Renewable Energy, Elsevier, vol. 167(C), pages 395-408.
    5. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    6. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    7. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    8. Manuel Parraga & José Vuelvas & Benjamín González-Díaz & Leonardo Rodríguez-Urrego & Arturo Fajardo, 2024. "A Systematic Review of Isolated Water and Energy Microgrids: Infrastructure, Optimization of Management Strategies, and Future Trends," Energies, MDPI, vol. 17(12), pages 1-28, June.
    9. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    11. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    12. Wang, Wei & Jing, Rui & Zhao, Yingru & Zhang, Chuan & Wang, Xiaonan, 2020. "A load-complementarity combined flexible clustering approach for large-scale urban energy-water nexus optimization," Applied Energy, Elsevier, vol. 270(C).
    13. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    14. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    15. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    16. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    17. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    18. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    19. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    20. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.