Sparse modeling approach for identifying the dominant factors affecting situation-dependent hourly electricity demand
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.114752
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003.
"Underlying trends and seasonality in UK energy demand: a sectoral analysis,"
Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
- Hunt, L.C. & Judge, G. & Ninomiya, Y., 2000. "Underlying Trends and Seasonality in UK Energy Demands: A Sectorial Analysis," Papers 134, Portsmouth University - Department of Economics.
- Keita Honjo & Hiroto Shiraki & Shuichi Ashina, 2018. "Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
- Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
- Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008.
"An hourly periodic state space model for modelling French national electricity load,"
International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
- V. Dordonnat & S.J. Koopman & M. Ooms & A. Dessertaine & J. Collet, 2008. "An Hourly Periodic State Space Model for Modelling French National Electricity Load," Tinbergen Institute Discussion Papers 08-008/4, Tinbergen Institute.
- Cho, Seong-Hoon & Tanaka, Katsuya & Wu, Junjie & Robert, Roland K. & Kim, Taeyoung, 2016. "Effects of nuclear power plant shutdowns on electricity consumption and greenhouse gas emissions after the Tohoku Earthquake," Energy Economics, Elsevier, vol. 55(C), pages 223-233.
- Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
- Isamu Matsukawa, 2016. "Consumer Energy Conservation Behavior After Fukushima," SpringerBriefs in Economics, Springer, number 978-981-10-1097-2, September.
- Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
- Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
- Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
- Osamu Kimura and Ken-Ichiro Nishio, 2016. "Responding to electricity shortfalls: Electricity-saving activities of households and firms in Japan after Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
- Al-Garni, Ahmed Z. & Zubair, Syed M. & Nizami, Javeed S., 1994. "A regression model for electric-energy-consumption forecasting in Eastern Saudi Arabia," Energy, Elsevier, vol. 19(10), pages 1043-1049.
- Nantian Huang & Guobo Lu & Dianguo Xu, 2016. "A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest," Energies, MDPI, vol. 9(10), pages 1-24, September.
- Fujimi, Toshio & Chang, Stephanie E., 2014. "Adaptation to electricity crisis: Businesses in the 2011 Great East Japan triple disaster," Energy Policy, Elsevier, vol. 68(C), pages 447-457.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- V. Ramesh Kumar & Pradipkumar Dixit, 2018. "Artificial Neural Network Model for Hourly Peak Load Forecast," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 155-160.
- Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
- Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fujimoto, Yu & Fujita, Megumi & Hayashi, Yasuhiro, 2021. "Deep reservoir architecture for short-term residential load forecasting: An online learning scheme for edge computing," Applied Energy, Elsevier, vol. 298(C).
- Yu Fujimoto & Akihisa Kaneko & Yutaka Iino & Hideo Ishii & Yasuhiro Hayashi, 2023. "Challenges in Smartizing Operational Management of Functionally-Smart Inverters for Distributed Energy Resources: A Review on Machine Learning Aspects," Energies, MDPI, vol. 16(3), pages 1-26, January.
- Li, Lechen & Meinrenken, Christoph J. & Modi, Vijay & Culligan, Patricia J., 2021. "Short-term apartment-level load forecasting using a modified neural network with selected auto-regressive features," Applied Energy, Elsevier, vol. 287(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Keita Honjo & Hiroto Shiraki & Shuichi Ashina, 2018. "Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
- Kaneko, Nanae & Fujimoto, Yu & Hayashi, Yasuhiro, 2022. "Sensitivity analysis of factors relevant to extreme imbalance between procurement plans and actual demand: Case study of the Japanese electricity market," Applied Energy, Elsevier, vol. 313(C).
- Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016.
"A new approach to modeling the effects of temperature fluctuations on monthly electricity demand,"
Energy Economics, Elsevier, vol. 60(C), pages 206-216.
- Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2015. "A New Approach to Modeling the Effects of Temperature Fluctuations on Monthly Electricity Demand," Working Papers 1512, Department of Economics, University of Missouri.
- Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
- Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
- Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
- Sharimakin, Akinsehinwa, 2021. "Modelling asymmetric price responses of industrial energy demand with a dynamic hierarchical model," Energy Economics, Elsevier, vol. 98(C).
- Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
- Agnolucci, Paolo & De Lipsis, Vincenzo & Arvanitopoulos, Theodoros, 2017. "Modelling UK sub-sector industrial energy demand," Energy Economics, Elsevier, vol. 67(C), pages 366-374.
- Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," ERSA Working Paper Series, Economic Research Southern Africa, vol. 0.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
- Dilaver, Zafer & Hunt, Lester C., 2011.
"Turkish aggregate electricity demand: An outlook to 2020,"
Energy, Elsevier, vol. 36(11), pages 6686-6696.
- Zafer Dilaver & Lester C Hunt, 2011. "Turkish Aggregate Electricity Demand: An Outlook to 2020," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 132, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Soon, Byung Min & Thompson, Wyatt, 2017. "Testing for Persistent Japanese Beef Trade Impacts from BSE Using a Time-Varying Armington Model," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259150, Agricultural and Applied Economics Association.
- Jeyhun I. Mikayilov & Fakhri J. Hasanov & Carlo A. Bollino & Ceyhun Mahmudlu, 2017. "Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach," Energies, MDPI, vol. 10(11), pages 1-12, November.
- Ozturk, Ilhan & Arisoy, Ibrahim, 2016. "An estimation of crude oil import demand in Turkey: Evidence from time-varying parameters approach," Energy Policy, Elsevier, vol. 99(C), pages 174-179.
- Nikos Sakkas & Sofia Yfanti & Costas Daskalakis & Eduard Barbu & Marharyta Domnich, 2021. "Interpretable Forecasting of Energy Demand in the Residential Sector," Energies, MDPI, vol. 14(20), pages 1-17, October.
- Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
More about this item
Keywords
Factor analysis; Machine learning; Hourly electricity demand; Partially linear additive model; Sparse modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:265:y:2020:i:c:s0306261920302646. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.