IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic17.html
   My bibliography  Save this article

Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants

Author

Listed:
  • Tsay, Calvin
  • Pattison, Richard C.
  • Zhang, Yue
  • Rochelle, Gary T.
  • Baldea, Michael

Abstract

Amine scrubbing processes remain an important technology for mitigating the contribution of carbon emissions to global warming and climate change. Like other chemical processes, they can benefit from computer-aided optimization at the design stage, but systematic optimization procedures are rarely employed due to the challenges of simulating the requisite rate-based mass transfer and reaction models. This paper presents a novel approach for the simulation and optimization of rate-based columns, with specific application to the absorber and stripper columns found in (amine-) solvent-based carbon capture processes. The approach is based on pseudo-transient continuation, and the resulting column models are easily incorporated into large-scale process flowsheets with other previously developed pseudo-transient models. We demonstrate that the proposed approach allows for gradient-based optimization of next-generation amine scrubbing processes by considering a complex carbon capture process under three different operating conditions. The results provide general insight into the design of amine scrubbing processes, and shadow prices at the optimal point(s) suggest potential avenues for improving the process economics. The effects of carbon dioxide removal percentage and flue gas composition on process economics are briefly analyzed.

Suggested Citation

  • Tsay, Calvin & Pattison, Richard C. & Zhang, Yue & Rochelle, Gary T. & Baldea, Michael, 2019. "Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:17
    DOI: 10.1016/j.apenergy.2019.113379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Psarras, Peter C. & Comello, Stephen & Bains, Praveen & Charoensawadpong, Panunya & Reichelstein, Stefan J. & Wilcox, Jennifer, 2017. "Carbon Capture and Utilization in the Industrial Sector," Research Papers repec:ecl:stabus:3493, Stanford University, Graduate School of Business.
    3. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    4. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yagihara, Koki & Ohno, Hajime & Guzman-Urbina, Alexander & Ni, Jialing & Fukushima, Yasuhiro, 2022. "Analyzing flue gas properties emitted from power and industrial sectors toward heat-integrated carbon capture," Energy, Elsevier, vol. 250(C).
    2. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    3. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    4. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    5. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    6. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    7. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    8. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Zhiwei Liao & Bowen Wang & Wenjuan Tao & Ye Liu & Qiyun Hu, 2024. "Research on Decision Optimization and the Risk Measurement of the Power Generation Side Based on Quantile Data-Driven IGDT," Energies, MDPI, vol. 17(7), pages 1-21, March.
    10. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    11. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    12. Leimbrink, Mathias & Sandkämper, Stephanie & Wardhaugh, Leigh & Maher, Dan & Green, Phil & Puxty, Graeme & Conway, Will & Bennett, Robert & Botma, Henk & Feron, Paul & Górak, Andrzej & Skiborowski, Mi, 2017. "Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture," Applied Energy, Elsevier, vol. 208(C), pages 263-276.
    13. Gür, Turgut M., 2020. "Perspectives on oxygen-based coal conversion towards zero-carbon power generation," Energy, Elsevier, vol. 196(C).
    14. Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
    15. Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
    16. Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
    17. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    18. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    19. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    20. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.