IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i4p65-1388d1495632.html
   My bibliography  Save this article

Techno-Economic Feasibility Analysis of Post-Combustion Carbon Capture in an NGCC Power Plant in Uzbekistan

Author

Listed:
  • Azizbek Kamolov

    (Department of IT, Automation, and Control, Tashkent Institute of Chemical Technology, Navoi 32, Tashkent 100011, Uzbekistan
    Department of Chemical and Biomolecular Engineering, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain)

  • Zafar Turakulov

    (Department of IT, Automation, and Control, Tashkent Institute of Chemical Technology, Navoi 32, Tashkent 100011, Uzbekistan
    Department of Chemical and Biomolecular Engineering, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain)

  • Patrik Furda

    (Department of Chemical and Biochemical Engineering, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia)

  • Miroslav Variny

    (Department of Chemical and Biochemical Engineering, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia)

  • Adham Norkobilov

    (Department of Engineering Technologies, Shahrisabz Branch of Tashkent Institute of Chemical Technology, Shahrisabz 181306, Uzbekistan)

  • Marcos Fallanza

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain)

Abstract

As natural gas-fired combined cycle (NGCC) power plants continue to constitute a crucial part of the global energy landscape, their carbon dioxide (CO 2 ) emissions pose a significant challenge to climate goals. This paper evaluates the feasibility of implementing post-combustion carbon capture, storage, and utilization (CCSU) technologies in NGCC power plants for end-of-pipe decarbonization in Uzbekistan. This study simulates and models a 450 MW NGCC power plant block, a first-generation, technically proven solvent—MEA-based CO 2 absorption plant—and CO 2 compression and pipeline transportation to nearby oil reservoirs to evaluate the technical, economic, and environmental aspects of CCSU integration. Parametric sensitivity analysis is employed to minimize energy consumption in the regeneration process. The economic analysis evaluates the levelized cost of electricity (LCOE) on the basis of capital expenses (CAPEX) and operational expenses (OPEX). The results indicate that CCSU integration can significantly reduce CO 2 emissions by more than 1.05 million tonnes annually at a 90% capture rate, although it impacts plant efficiency, which decreases from 55.8% to 46.8% because of the significant amount of low-pressure steam extraction for solvent regeneration at 3.97 GJ/tonne CO 2 and multi-stage CO 2 compression for pipeline transportation and subsequent storage. Moreover, the CO 2 capture, compression, and transportation costs are almost 61 USD per tonne, with an equivalent LCOE increase of approximately 45% from the base case. This paper concludes that while CCSU integration offers a promising path for the decarbonization of NGCC plants in Uzbekistan in the near- and mid-term, its implementation requires massive investments due to the large scale of these plants.

Suggested Citation

  • Azizbek Kamolov & Zafar Turakulov & Patrik Furda & Miroslav Variny & Adham Norkobilov & Marcos Fallanza, 2024. "Techno-Economic Feasibility Analysis of Post-Combustion Carbon Capture in an NGCC Power Plant in Uzbekistan," Clean Technol., MDPI, vol. 6(4), pages 1-32, October.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:65-1388:d:1495632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/4/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/4/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    2. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    3. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    4. Madeddu, Claudio & Errico, Massimiliano & Baratti, Roberto, 2018. "Process analysis for the carbon dioxide chemical absorption–regeneration system," Applied Energy, Elsevier, vol. 215(C), pages 532-542.
    5. Hu, Yue & Ahn, Hyungwoong, 2017. "Process integration of a Calcium-looping process with a natural gas combined cycle power plant for CO2 capture and its improvement by exhaust gas recirculation," Applied Energy, Elsevier, vol. 187(C), pages 480-488.
    6. Tsay, Calvin & Pattison, Richard C. & Zhang, Yue & Rochelle, Gary T. & Baldea, Michael, 2019. "Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    2. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    3. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
    4. Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
    5. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    6. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    7. Ambec, Stefan & Esposito, Federico & Pacelli, Antonia, 2024. "The economics of carbon leakage mitigation policies," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    8. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).
    9. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    10. John Bistline & Geoffrey Blanford & Maxwell Brown & Dallas Burtraw & Maya Domeshek & Jamil Farbes & Allen Fawcett & Anne Hamilton & Jesse Jenkins & Ryan Jones & Ben King & Hannah Kolus & John Larsen &, 2023. "Emissions and Energy Impacts of the Inflation Reduction Act," Papers 2307.01443, arXiv.org.
    11. Yang, Sheng & Zhang, Lu & Xie, Nan & Gu, Zhaohui & Liu, Zhiqiang, 2021. "Thermodynamic analysis of a semi-lean solution process for energy saving via rectisol wash technology," Energy, Elsevier, vol. 226(C).
    12. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    13. Strojny, Magdalena & Gładysz, Paweł & Hanak, Dawid P. & Nowak, Wojciech, 2023. "Comparative analysis of CO2 capture technologies using amine absorption and calcium looping integrated with natural gas combined cycle power plant," Energy, Elsevier, vol. 284(C).
    14. Majid Hashemi & Glenn P. Jenkins & Frank Milne, 2023. "Renewable Energy Support Through Feed-in Tariffs: A Retrospective Stakeholder Analysis," Development Discussion Papers 2023-08, JDI Executive Programs.
    15. Davis G. Nelson & Elena A. Mikhailova & Hamdi A. Zurqani & Lili Lin & Zhenbang Hao & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2024. "Soil-Based Emissions and Context-Specific Climate Change Planning to Support the United Nations (UN) Sustainable Development Goal (SDG) on Climate Action: A Case Study of Georgia (USA)," Land, MDPI, vol. 13(10), pages 1-24, October.
    16. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    17. Claudia Cristina Sanchez Moore & Luiz Kulay, 2019. "Effect of the Implementation of Carbon Capture Systems on the Environmental, Energy and Economic Performance of the Brazilian Electricity Matrix," Energies, MDPI, vol. 12(2), pages 1-18, January.
    18. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    19. Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
    20. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:65-1388:d:1495632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.