IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp102-109.html
   My bibliography  Save this article

Optimization of the production of docosahexaenoic fatty acid by the heterotrophic microalga Crypthecodinium cohnii utilizing a dark fermentation effluent

Author

Listed:
  • Chalima, Angelina
  • Taxeidis, George
  • Topakas, Evangelos

Abstract

Dark fermentation is an anaerobic digestion process of biowaste, used to produce hydrogen as a fuel, which however releases high amounts of polluting volatile fatty acids in the environment. In order for the process to become more competitive, the acids stream can be utilized through conversion to high added-value docosahexaenoic acid by the microalga Crypthecodinium cohnii. Docosahexaenoic acid is one of the two main omega-3 fatty acids, necessary for human nutrition. The purpose of this work was to optimize the production of omega-3 fatty acids by the cells, utilizing the organic content of a dark fermentation effluent. For that purpose, the effect of different fermentation conditions was examined, such as incubation temperature, nitrogen source and concentration, the addition of chemical modulators, as well as the feeding composition. The volatile fatty acid content of the effluent was totally depleted in a fed-batch culture of the microalga, while the cells accumulated DHA in a percentage of 35.6% of total lipids, when fed with yeast extract or 34.2% when fed with ammonium sulfate. Taking into consideration the economic feasibility of the culture conditions proposed it was concluded that the use of yeast extract could be substituted by the much economic ammonium sulfate.

Suggested Citation

  • Chalima, Angelina & Taxeidis, George & Topakas, Evangelos, 2020. "Optimization of the production of docosahexaenoic fatty acid by the heterotrophic microalga Crypthecodinium cohnii utilizing a dark fermentation effluent," Renewable Energy, Elsevier, vol. 152(C), pages 102-109.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:102-109
    DOI: 10.1016/j.renene.2020.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahdah, Eliane & Estephane, Jane & Haydar, Reem & Youssef, Yara & El Khoury, Bilal & Gennequin, Cedric & Aboukaïs, Antoine & Abi-Aad, Edmond & Aouad, Samer, 2020. "Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment," Renewable Energy, Elsevier, vol. 146(C), pages 1242-1248.
    2. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    3. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    4. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    5. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    6. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Oliver & Thomas Dietrich & Izaskun Marañón & Maria Carmen Villarán & Ramón J. Barrio, 2020. "Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market," Resources, MDPI, vol. 9(12), pages 1-15, December.
    2. Sarat Chandra Togarcheti & Ramesh Babu Padamati, 2021. "Comparative Life Cycle Assessment of EPA and DHA Production from Microalgae and Farmed Fish," Clean Technol., MDPI, vol. 3(4), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Cecchin & Roberta Salomone & Pauline Deutz & Andrea Raggi & Laura Cutaia, 2021. "What Is in a Name? The Rising Star of the Circular Economy as a Resource-Related Concept for Sustainable Development," Circular Economy and Sustainability, Springer, vol. 1(1), pages 83-97, June.
    2. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    3. Alejandro Padilla-Rivera & Sara Russo-Garrido & Nicolas Merveille, 2020. "Addressing the Social Aspects of a Circular Economy: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    4. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.
    5. Yamoah, Fred A. & Sivarajah, Uthayasankar & Mahroof, Kamran & Peña, Iker González, 2022. "Demystifying corporate inertia towards transition to circular economy: A management frame of reference," International Journal of Production Economics, Elsevier, vol. 244(C).
    6. Jens Horbach & Christian Rammer, 2020. "Circular economy innovations, growth and employment at the firm level: Empirical evidence from Germany," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 615-625, June.
    7. Bongers, Anelí & Casas, Pablo, 2022. "The circular economy and the optimal recycling rate: A macroeconomic approach," Ecological Economics, Elsevier, vol. 199(C).
    8. Daniel A. Salas & Paulina Criollo & Angel D. Ramirez, 2021. "The Role of Higher Education Institutions in the Implementation of Circular Economy in Latin America," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    9. Mutuku, Judith & Tocock, Mark & Yanotti, Maria & Tinch, Dugald & Hatton MacDonald, Darla, 2024. "Public perceptions of the value of reducing marine plastics in Australian waters," Ecological Economics, Elsevier, vol. 217(C).
    10. D'Amato, D. & Korhonen, J., 2021. "Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework," Ecological Economics, Elsevier, vol. 188(C).
    11. Camilo-A. Vargas-Terranova & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero & Miguel-A. Rozo-Arango, 2022. "M-GRCT: A Dynamic Circular Economy Model for the Optimal Design of Waste Management Systems in Low-Income Municipalities," IJERPH, MDPI, vol. 19(5), pages 1-25, February.
    12. Lopes de Sousa Jabbour, Ana Beatriz & Chiappetta Jabbour, Charbel Jose & Choi, Tsan-Ming & Latan, Hengky, 2022. "‘Better together’: Evidence on the joint adoption of circular economy and industry 4.0 technologies," International Journal of Production Economics, Elsevier, vol. 252(C).
    13. Suárez-Eiroa, Brais & Fernández, Emilio & Soto-Oñate, David & Ovejero-Campos, Aida & Urbieta, Pablo & Méndez, Gonzalo, 2022. "A framework to allocate responsibilities of the global environmental concerns: A case study in Spain involving regions, municipalities, productive sectors, industrial parks, and companies," Ecological Economics, Elsevier, vol. 192(C).
    14. Jacob Guinot & Zina Barghouti & Ricardo Chiva, 2022. "Understanding Green Innovation: A Conceptual Framework," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    15. Choudhary, Divya & Qaiser, Fahham Hasan & Choudhary, Alok & Fernandes, Kiran, 2022. "A model for managing returns in a circular economy context: A case study from the Indian electronics industry," International Journal of Production Economics, Elsevier, vol. 249(C).
    16. Mura, Rita & Vicentini, Francesca & Botti, Ludovico Maria & Chiriacò, Maria Vincenza, 2023. "Economic and environmental outcomes of a sustainable and circular approach: Case study of an Italian wine-producing firm," Journal of Business Research, Elsevier, vol. 154(C).
    17. José Miguel Rodríguez-Antón & Luis Rubio-Andrada & María Soledad Celemín-Pedroche & Soraya María Ruíz-Peñalver, 2022. "From the circular economy to the sustainable development goals in the European Union: an empirical comparison," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(1), pages 67-95, March.
    18. Bianchi, Marco & Cordella, Mauro, 2023. "Does circular economy mitigate the extraction of natural resources? Empirical evidence based on analysis of 28 European economies over the past decade," Ecological Economics, Elsevier, vol. 203(C).
    19. Maryam Hina & Chetna Chauhan & Rajat Sharma & Amandeep Dhir, 2023. "Circular economy business models as pillars of sustainability: Where are we now, and where are we heading?," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 6182-6209, December.
    20. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:102-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.