IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp340-353.html
   My bibliography  Save this article

Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas

Author

Listed:
  • Ngo, Son Ich
  • Lim, Young-Il
  • Kim, Woohyun
  • Seo, Dong Joo
  • Yoon, Wang Lai

Abstract

A three-dimensional (3D) computational fluid dynamics (CFD) model of an annulus steam methane reforming (SMR) reactor was developed for producing 2.5 Nm3/h of H2 from natural gas. The feed and combustion gases played a role in a counter-current heat exchange owing to a narrow sleeve equipped between the combustor and catalytic reactor. The momentum, energy, and mass conservation equations were integrated with a realizable k–ε turbulence model, discrete ordinates radiation model, and reversible SMR reaction kinetics. The CFD results such as axial temperature profiles and producer gas compositions were validated against the experimental data measured in this study. The thermal efficiency of the compact SMR reactor was 60%, and the heat flux through the reactor wall was 39 kW/m2. The overall heat transfer coefficient from the sleeve to the catalytic reactor was 158 W/m2/K. The sleeve-type SMR reactor flattened the temperature profile along the reactor length.

Suggested Citation

  • Ngo, Son Ich & Lim, Young-Il & Kim, Woohyun & Seo, Dong Joo & Yoon, Wang Lai, 2019. "Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas," Applied Energy, Elsevier, vol. 236(C), pages 340-353.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:340-353
    DOI: 10.1016/j.apenergy.2018.11.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
    2. Diglio, Giuseppe & Hanak, Dawid P. & Bareschino, Piero & Pepe, Francesco & Montagnaro, Fabio & Manovic, Vasilije, 2018. "Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell," Applied Energy, Elsevier, vol. 210(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    2. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    3. Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
    4. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    5. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    6. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    7. Shan Dong & Yi Lin & Jiajun Hu & Chenglin Gu & Leilin Ding & Xinjian Zhang & Shi Jiang & Yu Guo, 2023. "Preparation of an Anodic Alumina-Supported Ni Catalyst and Development of a Catalytic Plate Reformer for the Steam Reforming of Methane," Energies, MDPI, vol. 16(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Rong & Ding, Jing & Wang, Yarong & Yuan, Qinquan & Wang, Weilong & Lu, Jianfeng, 2019. "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator," Applied Energy, Elsevier, vol. 233, pages 789-801.
    2. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    3. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    4. Gil, María V. & Rout, Kumar R. & Chen, De, 2018. "Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery," Applied Energy, Elsevier, vol. 222(C), pages 595-607.
    5. Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
    6. Yang, Sheng & Jin, Zhengpeng & Ji, Feng & Deng, Chengwei & Liu, Zhiqiang, 2023. "Proposal and analysis of a combined cooling, heating, and power system with humidity control based on solid oxide fuel cell," Energy, Elsevier, vol. 284(C).
    7. Li, Haolong & Zhang, Tuo & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Performance enhancement of multi-gas compatible dual-channel interconnector for planar solid oxide fuel cells," Energy, Elsevier, vol. 283(C).
    8. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    9. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.
    11. Diglio, Giuseppe & Bareschino, Piero & Mancusi, Erasmo & Pepe, Francesco & Montagnaro, Fabio & Hanak, Dawid P. & Manovic, Vasilije, 2018. "Feasibility of CaO/CuO/NiO sorption-enhanced steam methane reforming integrated with solid-oxide fuel cell for near-zero-CO2 emissions cogeneration system," Applied Energy, Elsevier, vol. 230(C), pages 241-256.
    12. Lu, Yi Ran & Nikrityuk, Petr, 2018. "A fixed-bed reactor for energy storage in chemicals (E2C): Proof of concept," Applied Energy, Elsevier, vol. 228(C), pages 593-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:340-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.