IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp803-815.html
   My bibliography  Save this article

Cost-efficient multi-energy management with flexible complementarity strategy for energy internet

Author

Listed:
  • Si, Fangyuan
  • Wang, Jinkuan
  • Han, Yinghua
  • Zhao, Qiang
  • Han, Peng
  • Li, Yan

Abstract

The increasing complexities of energy internet integrated with distributed renewable energy resources and multiple energy infrastructures require more effective multi-energy management method. The prosumers with multiparty interaction represent major potential contributors for comprehensively improving the energy efficiency and socioeconomic benefits. In this paper, a novel multi-energy management strategy based on the complementarity of multi-energy demand was proposed to explore optimal energy scheduling problems of prosumers. The residential prosumer with a multi-energy coupling matrix and the industrial prosumer with a resource-task network were formulated to optimise the local operations. Furthermore, a joint planning for the prosumers was developed to minimise the global operating costs, where the prosumers’ interests in terms of the energy exchange process were formulated as a multi-objective optimisation problem based on the Pareto efficiency theory. In addition, an optimisation method that integrates the epsilon-constraint algorithm and the extreme points of the feasible solution space was proposed to obtain better and more diverse solutions. The proposed methodology was applied to an urban multi-energy system. Simulation results demonstrated that the proposed multi-energy management method could effectively solve the optimal energy scheduling problems. At the compromise solution point, cost reductions of 7% and 10% can be obtained by the two prosumers on a summer day, with cost reductions of 9% and 11% obtained on a winter day. The use of multi-energy management method could establish a win-win relationship for prosumers and generate substantial benefits for the whole system.

Suggested Citation

  • Si, Fangyuan & Wang, Jinkuan & Han, Yinghua & Zhao, Qiang & Han, Peng & Li, Yan, 2018. "Cost-efficient multi-energy management with flexible complementarity strategy for energy internet," Applied Energy, Elsevier, vol. 231(C), pages 803-815.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:803-815
    DOI: 10.1016/j.apenergy.2018.09.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    3. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    4. Yu, Mengmeng & Lu, Renzhi & Hong, Seung Ho, 2016. "A real-time decision model for industrial load management in a smart grid," Applied Energy, Elsevier, vol. 183(C), pages 1488-1497.
    5. Brand, Lisa & Calvén, Alexandra & Englund, Jessica & Landersjö, Henrik & Lauenburg, Patrick, 2014. "Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks," Applied Energy, Elsevier, vol. 129(C), pages 39-48.
    6. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    7. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    8. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Rui & Kuriyan, Kamal & Kong, Qingyuan & Zhang, Zhihui & Shah, Nilay & Li, Ning & Zhao, Yingru, 2019. "Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    3. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    4. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    5. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    6. Chen, Yixuan & Qu, Kaiping & Pan, Zhenning & Yu, Tao, 2020. "Multi-objective electricity-gas flow with stochastic dispersion control for air pollutants using two-stage Pareto optimization," Applied Energy, Elsevier, vol. 279(C).
    7. Zhang, Siyuan & Liu, Xinxin & Liu, Liang & Pan, Xiaohui & Li, Qibin & Wang, Shukun & Jiao, Youzhou & He, Chao & Li, Gang, 2024. "Thermo-economic assessment and multi-objective optimization of organic Rankine cycle driven by solar energy and waste heat," Energy, Elsevier, vol. 290(C).
    8. Si, Fangyuan & Han, Yinghua & Zhao, Qiang & Wang, Jinkuan, 2020. "Cost-effective operation of the urban energy system with variable supply and demand via coordination of multi-energy flows," Energy, Elsevier, vol. 203(C).
    9. Liu, Zhiyuan & Yu, Hang & Liu, Rui, 2019. "A novel energy supply and demand matching model in park integrated energy system," Energy, Elsevier, vol. 176(C), pages 1007-1019.
    10. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    11. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    12. A. S. M. Monjurul Hasan & Rakib Hossain & Rashedul Amin Tuhin & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    13. Wang, Huaizhi & Ruan, Jiaqi & Ma, Zhengwei & Zhou, Bin & Fu, Xueqian & Cao, Guangzhong, 2019. "Deep learning aided interval state prediction for improving cyber security in energy internet," Energy, Elsevier, vol. 174(C), pages 1292-1304.
    14. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    15. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    2. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    3. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    5. Yunshou Mao & Jiekang Wu & Wenjie Zhang, 2020. "An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage," Energies, MDPI, vol. 13(23), pages 1-20, December.
    6. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    7. Liangce He & Zhigang Lu & Lili Pan & Hao Zhao & Xueping Li & Jiangfeng Zhang, 2019. "Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System," Energies, MDPI, vol. 12(4), pages 1-19, February.
    8. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    9. Abdulaal, Ahmed & Moghaddass, Ramin & Asfour, Shihab, 2017. "Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response," Applied Energy, Elsevier, vol. 206(C), pages 206-221.
    10. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    11. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.
    12. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    13. Fuchs, Marcus & Teichmann, Jens & Lauster, Moritz & Remmen, Peter & Streblow, Rita & Müller, Dirk, 2016. "Workflow automation for combined modeling of buildings and district energy systems," Energy, Elsevier, vol. 117(P2), pages 478-484.
    14. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    15. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    16. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    17. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    18. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    19. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    20. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:803-815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.