IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2671-d229905.html
   My bibliography  Save this article

Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh

Author

Listed:
  • A. S. M. Monjurul Hasan

    (Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla 3501, Bangladesh)

  • Rakib Hossain

    (Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla 3501, Bangladesh)

  • Rashedul Amin Tuhin

    (Department of Computer Science and Engineering, East West University, Dhaka 1215, Bangladesh)

  • Taiyeb Hasan Sakib

    (Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla 3501, Bangladesh)

  • Patrik Thollander

    (Division of Energy Systems, Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden
    Department of Building, Energy and Environment Engineering, University of Gävle, 801 76 Gävle, Sweden)

Abstract

Improved energy efficiency is being considered as one of the significant challenges to mitigating climate change all over the world. While developed countries have already adopted energy management and auditing practices to improve energy efficiency, the developing countries lag far behind. There are a limited number of studies which have been conducted in the context of developing countries, which mostly revolve around highly energy-intensive sectors. This study looks into the existence and importance of the challenges to and motivating forces for the adoption of energy management practices in Bangladesh, a developing country, focusing on the non-energy-intensive manufacturing industries. Conducted as a multiple case study, the results indicate the existence of several barriers towards adopting and implementing the management of energy practices in the non-energy-intensive industries of Bangladesh, where among them, “other preferences for capital venture” and “inadequate capital expenditure” are the most dominant. This study also identified a number of driving forces that can accelerate the acceptance of energy efficiency practices, such as the demands from the owner, loans, subsidies, and a lowered cost–benefit ratio. Findings of this study could assist the concerned stakeholders to develop beneficial policies and a proper regulatory framework for the non-energy-intensive industries of developing countries like Bangladesh.

Suggested Citation

  • A. S. M. Monjurul Hasan & Rakib Hossain & Rashedul Amin Tuhin & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2671-:d:229905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    2. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    3. Rohdin, P. & Thollander, P., 2006. "Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden," Energy, Elsevier, vol. 31(12), pages 1836-1844.
    4. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    5. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    6. Royston, Sarah & Selby, Jan & Shove, Elizabeth, 2018. "Invisible energy policies: A new agenda for energy demand reduction," Energy Policy, Elsevier, vol. 123(C), pages 127-135.
    7. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    8. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    9. Chaosu Li & Yan Song, 2016. "Government response to climate change in China: a study of provincial and municipal plans," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(9), pages 1679-1710, September.
    10. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    11. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    12. Primc, Kaja & Slabe-Erker, Renata & Majcen, Boris, 2019. "Constructing energy poverty profiles for an effective energy policy," Energy Policy, Elsevier, vol. 128(C), pages 727-734.
    13. Vine, Edward, 2005. "An international survey of the energy service company (ESCO) industry," Energy Policy, Elsevier, vol. 33(5), pages 691-704, March.
    14. Thollander, Patrik & Mardan, Nawzad & Karlsson, Magnus, 2009. "Optimization as investment decision support in a Swedish medium-sized iron foundry - A move beyond traditional energy auditing," Applied Energy, Elsevier, vol. 86(4), pages 433-440, April.
    15. Apriani Soepardi & Patrik Thollander, 2018. "Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    16. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    17. Si, Fangyuan & Wang, Jinkuan & Han, Yinghua & Zhao, Qiang & Han, Peng & Li, Yan, 2018. "Cost-efficient multi-energy management with flexible complementarity strategy for energy internet," Applied Energy, Elsevier, vol. 231(C), pages 803-815.
    18. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    2. Elpida V. Tachmitzaki & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2019. "Energy Management Practices’ Determinants in Greek Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    3. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    4. Aminul Islam & Mohammad Tofayal Ahmed & Md Alam Hossain Mondal & Md. Rabiul Awual & Minhaj Uddin Monir & Kamrul Islam, 2021. "A snapshot of coal‐fired power generation in Bangladesh: A demand–supply outlook," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 157-182, May.
    5. Bhawani Thapa Ghimire & Umaporn Muneenam & Kuaanan Techato, 2023. "Renewable Energy Use in Green Hotels for Sustainability: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 618-627, November.
    6. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    2. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    3. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    5. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    6. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    7. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    8. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 93-106, June.
    9. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
    10. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    11. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    12. Álvarez-Diez, Susana & Baixauli-Soler, J. Samuel & Lozano-Reina, Gabriel & Rodríguez-Linares Rey, Diego, 2024. "Subsidies for investing in energy efficiency measures: Applying a random forest model for unbalanced samples," Applied Energy, Elsevier, vol. 359(C).
    13. Aida Sa & Patrik Thollander & Enrico Cagno & Majid Rafiee, 2018. "Assessing Swedish Foundries Energy Management Program," Energies, MDPI, vol. 11(10), pages 1-13, October.
    14. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    16. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    17. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    18. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.
    19. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    20. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2671-:d:229905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.