IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp645-659.html
   My bibliography  Save this article

Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system

Author

Listed:
  • Ahmadipour, Masoud
  • Hizam, Hashim
  • Othman, Mohammad Lutfi
  • Radzi, Mohd Amran Mohd
  • Murthy, Avinash Srikanta

Abstract

In this paper, a new islanding detection technique is proposed for a three-phase grid connected photovoltaic inverter system using the multi-signal analysis method. The proposed strategy is divided into two steps: first step, all possible grid faults, switching transients and islanding events are simulated and the essential detection parameters are measured. By means of the Slantlet Transform theory, the energy, mean value, minimum, maximum, range, standard deviation and log energy entropy at any decomposition level of Slantlet Transform for parameter detection is computed and the best of them are selected as input data of second step. Second step, an advanced machine learning based on Ridgelet Probabilistic Neural Network is utilized to predict islanding and none islanding states. In order to train Ridgelet Probabilistic Neural Network, a modified differential evolution algorithm with new mutation phase, crossover process, and selection mechanism is proposed. The results depicting the effectiveness of the proposed method are explained and outcomes are drawn.

Suggested Citation

  • Ahmadipour, Masoud & Hizam, Hashim & Othman, Mohammad Lutfi & Radzi, Mohd Amran Mohd & Murthy, Avinash Srikanta, 2018. "Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 231(C), pages 645-659.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:645-659
    DOI: 10.1016/j.apenergy.2018.09.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Fares, Robert L. & Webber, Michael E., 2015. "Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime," Applied Energy, Elsevier, vol. 137(C), pages 482-489.
    3. Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
    4. Karimi, M. & Mokhlis, H. & Naidu, K. & Uddin, S. & Bakar, A.H.A., 2016. "Photovoltaic penetration issues and impacts in distribution network – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 594-605.
    5. Heidari, Mehrdad & Seifossadat, Ghodratollah & Razaz, Morteza, 2013. "Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 525-532.
    6. Sigrist, L. & Lobato, E. & Rouco, L. & Gazzino, M. & Cantu, M., 2017. "Economic assessment of smart grid initiatives for island power systems," Applied Energy, Elsevier, vol. 189(C), pages 403-415.
    7. Vyas, Shashank & Kumar, Rajesh & Kavasseri, Rajesh, 2017. "Data analytics and computational methods for anti-islanding of renewable energy based Distributed Generators in power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 493-502.
    8. Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Li & Anqing Chen & Peixiong Liu & Wenbo Ren & Chenghao Zheng, 2024. "Multivariable Algorithm Using Signal-Processing Techniques to Identify Islanding Events in Utility Grid with Renewable Energy Penetration," Energies, MDPI, vol. 17(4), pages 1-26, February.
    2. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    3. Shen, Xiaojun & Wei, Hongyang & Wei, Li, 2020. "Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line," Applied Energy, Elsevier, vol. 260(C).
    4. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    5. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    2. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    3. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Zehir, Mustafa Alparslan & Batman, Alp & Sonmez, Mehmet Ali & Font, Aytug & Tsiamitros, Dimitrios & Stimoniaris, Dimitris & Kollatou, Theofano & Bagriyanik, Mustafa & Ozdemir, Aydogan & Dialynas, Evan, 2017. "Impacts of microgrids with renewables on secondary distribution networks," Applied Energy, Elsevier, vol. 201(C), pages 308-319.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    7. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    8. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    9. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    10. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    11. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    12. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    13. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    14. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    15. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    16. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    17. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    18. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    20. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:645-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.