IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp493-502.html
   My bibliography  Save this article

Data analytics and computational methods for anti-islanding of renewable energy based Distributed Generators in power grids

Author

Listed:
  • Vyas, Shashank
  • Kumar, Rajesh
  • Kavasseri, Rajesh

Abstract

The centralized generation based model of power delivery remains inefficient due to unavoidable losses and limited reach of the related infrastructure to penetrate into inaccessible areas. Distributed generation based on cleaner sources like wind, solar, biomass etc. can provide energy access to all in a standalone configuration called microgrid. However such distributed generators can also be interfaced with the utility grid and support power flow and ensure supply to connected consumers during utility outages. Grid availability impacted by its vulnerability to extreme events is a major issue affecting wide-spread deployment of such systems. The paper gives an account of major computational intelligence based techniques addressing the problem of islanding in power grids having renewable energy based distributed generators connected to them. The various methods reported have been analyzed in terms of their working methodologies, tools used, accuracy, speed and other relevant aspects. In light of the current state of the art and a need to add more resiliency to the operation of grid-connected distributed generation systems, a new prospect, with preliminary results, will be discussed to address the issue of islanding that can be applied as an effective strategy by utilities to ensure smoother operation of the power grid.

Suggested Citation

  • Vyas, Shashank & Kumar, Rajesh & Kavasseri, Rajesh, 2017. "Data analytics and computational methods for anti-islanding of renewable energy based Distributed Generators in power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 493-502.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:493-502
    DOI: 10.1016/j.rser.2016.11.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116308346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heidari, Mehrdad & Seifossadat, Ghodratollah & Razaz, Morteza, 2013. "Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 525-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    2. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    3. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    4. Ahmadipour, Masoud & Hizam, Hashim & Othman, Mohammad Lutfi & Radzi, Mohd Amran Mohd & Murthy, Avinash Srikanta, 2018. "Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 231(C), pages 645-659.
    5. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    6. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    7. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    2. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    3. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    4. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    5. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    6. Ahmadipour, Masoud & Hizam, Hashim & Othman, Mohammad Lutfi & Radzi, Mohd Amran Mohd & Murthy, Avinash Srikanta, 2018. "Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 231(C), pages 645-659.
    7. Muttaqi, Kashem M. & Aghaei, Jamshid & Ganapathy, Velappa & Nezhad, Ali Esmaeel, 2015. "Technical challenges for electric power industries with implementation of distribution system automation in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 129-142.
    8. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:493-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.