IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp300-319.html
   My bibliography  Save this article

Design and optimization of a Tesla turbine for ORC applications

Author

Listed:
  • Talluri, L.
  • Fiaschi, D.
  • Neri, G.
  • Ciappi, L.

Abstract

In recent years, small-micro power generation was appointed as one of the proper solutions to tackle the increasing energy consumption, while opening the way to distributed energy systems and micro grids. The most interesting solution for small-micro power generation is the ORC technology, however, it still needs further developments especially regarding the design of small and micro expanders. A possible solution for micro-expanders is the Tesla turbine, which is a viscous bladeless turbine. This concept was developed by Nikola Tesla at the beginning of the 20th century, but it went through a long period of indifference due to the run towards large size centralized power plants. Only recently it found a renewed appeal, as its features make it suitable for utilization in small and micro size systems, like ORC applications, where low cost components become very attractive for the exploitation of residual pressure drop.

Suggested Citation

  • Talluri, L. & Fiaschi, D. & Neri, G. & Ciappi, L., 2018. "Design and optimization of a Tesla turbine for ORC applications," Applied Energy, Elsevier, vol. 226(C), pages 300-319.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:300-319
    DOI: 10.1016/j.apenergy.2018.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    2. Desideri, Adriano & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications," Energy, Elsevier, vol. 97(C), pages 460-469.
    3. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    4. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    5. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    6. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    7. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2012. "Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles," Applied Energy, Elsevier, vol. 97(C), pages 601-608.
    8. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    9. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pacini, Leonardo & Ciappi, Lorenzo & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo & Smolka, Jacek, 2020. "Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications," Energy, Elsevier, vol. 212(C).
    2. Włodarski, Wojciech, 2019. "A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis," Energy, Elsevier, vol. 207(C).
    4. Ciappi, L. & Fiaschi, D. & Niknam, P.H. & Talluri, L., 2019. "Computational investigation of the flow inside a Tesla turbine rotor," Energy, Elsevier, vol. 173(C), pages 207-217.
    5. Burugupally, Sindhu Preetham & Weiss, Leland, 2019. "Design and performance of a miniature free piston expander," Energy, Elsevier, vol. 170(C), pages 611-618.
    6. Wenjiao Qi & Qinghua Deng & Yu Jiang & Qi Yuan & Zhenping Feng, 2018. "Disc Thickness and Spacing Distance Impacts on Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(1), pages 1-25, December.
    7. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    8. Rusin, Krzysztof & Wróblewski, Włodzimierz & Hasani Malekshah, Emad & Pahlavanzadeh, Mohammadsadegh & Rulik, Sebastian, 2024. "Extended analytical model of Tesla turbine with advanced modelling of velocity profile in minichannel between corotating disks with consideration of surface roughness," Energy, Elsevier, vol. 307(C).
    9. Thomazoni, André Luis Ribeiro & Ermel, Conrado & Schneider, Paulo Smith & Vieira, Lara Werncke & Hunt, Julian David & Ferreira, Sandro Barros & Rech, Charles & Gouvêa, Vinicius Santorum, 2022. "Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine," Energy, Elsevier, vol. 261(PB).
    10. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    2. Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
    3. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2015. "Design and performance prediction of radial ORC turboexpanders," Applied Energy, Elsevier, vol. 138(C), pages 517-532.
    4. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    5. Manfrida, G. & Pacini, L. & Talluri, L., 2018. "An upgraded Tesla turbine concept for ORC applications," Energy, Elsevier, vol. 158(C), pages 33-40.
    6. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2012. "Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles," Applied Energy, Elsevier, vol. 97(C), pages 601-608.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    9. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    11. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    12. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    13. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    14. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    15. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    16. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    17. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).
    18. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    19. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    20. Menberg, Kathrin & Heo, Yeonsook & Choi, Wonjun & Ooka, Ryozo & Choudhary, Ruchi & Shukuya, Masanori, 2017. "Exergy analysis of a hybrid ground-source heat pump system," Applied Energy, Elsevier, vol. 204(C), pages 31-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:300-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.