IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp1-10.html
   My bibliography  Save this article

Combined vs separate heat and power production – Primary energy comparison in high renewable share contexts

Author

Listed:
  • Noussan, Michel
  • Jarre, Matteo
  • Roberto, Roberta
  • Russolillo, Daniele

Abstract

Natural Gas Combined Cycle (NGCC) units are currently the most efficient power plants based on fossil fuels. When used for Combined Heat and Power (CHP) production, serving District Heating (DH) systems, they have been usually promoted by stating their lower primary energy consumption compared to separate production of power and heat with conventional technologies. However, a significant increase of the share of Renewable Energy Sources (RES) in power generation and Heat Pumps (HP) for heat production in buildings could undermine this assumption. This paper evaluates a case study in Northern Italy, by comparing the real operation of three NGCC plants serving a DH network against the separate production of power (from real data of the National electricity mix) and heat (considering two scenarios based on natural gas boilers and heat pumps). The analysis is performed on hourly data over a two-years’ time frame, to highlight the variations across the hours of the day and the seasons. To perform a comprehensive analysis, the entire system performance is considered, by comparing the useful energy supplied to the users to the primary energy consumption. The results show how the primary energy savings of fossil CHP technologies are strongly related with the available alternatives, which have been going through a significant evolution in last years. The separate production of heat and power can now be performed with competitive technologies, which benefit from the high share of RES in electricity production. Therefore, the comparison between combined and separate production is influenced by the high variability of the electricity generation mix, which needs to be carefully considered.

Suggested Citation

  • Noussan, Michel & Jarre, Matteo & Roberto, Roberta & Russolillo, Daniele, 2018. "Combined vs separate heat and power production – Primary energy comparison in high renewable share contexts," Applied Energy, Elsevier, vol. 213(C), pages 1-10.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:1-10
    DOI: 10.1016/j.apenergy.2018.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pohl, Elmar & Diarra, David, 2014. "A method to determine primary energy savings of CHP plants considering plant-side and demand-side characteristics," Applied Energy, Elsevier, vol. 113(C), pages 287-293.
    2. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    3. Winkler, Jenny & Pudlik, Martin & Ragwitz, Mario & Pfluger, Benjamin, 2016. "The market value of renewable electricity – Which factors really matter?," Applied Energy, Elsevier, vol. 184(C), pages 464-481.
    4. Wissner, Matthias, 2014. "Regulation of district-heating systems," Utilities Policy, Elsevier, vol. 31(C), pages 63-73.
    5. Wang, Haichao & Duanmu, Lin & Lahdelma, Risto & Li, Xiangli, 2017. "Developing a multicriteria decision support framework for CHP based combined district heating systems," Applied Energy, Elsevier, vol. 205(C), pages 345-368.
    6. Arandian, B. & Ardehali, M.M., 2017. "Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm ," Energy, Elsevier, vol. 140(P1), pages 466-480.
    7. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    8. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    9. Liu, Nairong & An, Haizhong & Hao, Xiaoqing & Feng, Sida, 2017. "The stability of the international heat pump trade pattern based on complex networks analysis," Applied Energy, Elsevier, vol. 196(C), pages 100-117.
    10. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    11. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    12. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro & de Jeu, Rob, 2017. "Towards a comprehensive policy for electricity from renewable energy: Designing for social welfare," Applied Energy, Elsevier, vol. 187(C), pages 228-242.
    13. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    14. Haakana, Juha & Tikka, Ville & Lassila, Jukka & Partanen, Jarmo, 2017. "Methodology to analyze combined heat and power plant operation considering electricity reserve market opportunities," Energy, Elsevier, vol. 127(C), pages 408-418.
    15. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2017. "Generation and storage scheduling of combined heat and power," Energy, Elsevier, vol. 124(C), pages 693-705.
    16. Romanchenko, Dmytro & Odenberger, Mikael & Göransson, Lisa & Johnsson, Filip, 2017. "Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden," Applied Energy, Elsevier, vol. 204(C), pages 16-30.
    17. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro, 2017. "Towards a comprehensive policy for electricity from renewable energy: An approach for policy design," Energy Policy, Elsevier, vol. 106(C), pages 169-182.
    18. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    19. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    20. Song, Jingjing & Wallin, Fredrik & Li, Hailong, 2017. "District heating cost fluctuation caused by price model shift," Applied Energy, Elsevier, vol. 194(C), pages 715-724.
    21. Pini Prato, Alessandro & Strobino, Fabrizio & Broccardo, Marco & Parodi Giusino, Luigi, 2012. "Integrated management of cogeneration plants and district heating networks," Applied Energy, Elsevier, vol. 97(C), pages 590-600.
    22. Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Peretto, Antonio, 2014. "Application of environmental performance assessment of CHP systems with local and global approaches," Applied Energy, Elsevier, vol. 130(C), pages 774-782.
    23. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    24. Fubara, Tekena Craig & Cecelja, Franjo & Yang, Aidong, 2014. "Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption," Applied Energy, Elsevier, vol. 114(C), pages 327-334.
    25. Kipping, A. & Trømborg, E., 2017. "Modeling hourly consumption of electricity and district heat in non-residential buildings," Energy, Elsevier, vol. 123(C), pages 473-486.
    26. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    27. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    3. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    5. Chen, Yue & Wei, Wei & Liu, Feng & Wu, Qiuwei & Mei, Shengwei, 2018. "Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems," Applied Energy, Elsevier, vol. 230(C), pages 403-416.
    6. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    7. Beatrice Castellani & Elena Morini & Benedetto Nastasi & Andrea Nicolini & Federico Rossi, 2018. "Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building," Energies, MDPI, vol. 11(7), pages 1-15, July.
    8. Ceglia, F. & Marrasso, E. & Pallotta, G. & Roselli, C. & Sasso, M., 2023. "Assessing the influence of time-dependent power grid efficiency indicators on primary energy savings and economic incentives for high-efficiency cogeneration," Energy, Elsevier, vol. 278(PB).
    9. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    10. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    11. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    12. Marco Ravina & Costanza Gamberini & Alessandro Casasso & Deborah Panepinto, 2020. "Environmental and Health Impacts of Domestic Hot Water (DHW) Boilers in Urban Areas: A Case Study from Turin, NW Italy," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    13. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    14. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noussan, Michel, 2018. "Performance based approach for electricity generation in smart grids," Applied Energy, Elsevier, vol. 220(C), pages 231-241.
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    4. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    5. Antonucci, V. & Branchini, L. & Brunaccini, G. & De Pascale, A. & Ferraro, M. & Melino, F. & Orlandini, V. & Sergi, F., 2017. "Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application," Applied Energy, Elsevier, vol. 185(P2), pages 1256-1267.
    6. Weiss, Olga & Pareschi, Giacomo & Georges, Gil & Boulouchos, Konstantinos, 2021. "The Swiss energy transition: Policies to address the Energy Trilemma," Energy Policy, Elsevier, vol. 148(PA).
    7. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    8. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    9. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    11. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    12. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    13. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    14. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    15. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    16. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    17. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    18. Rodríguez-Huerta, Edgar & Rosas-Casals, Martí & Sorman, Alevgul H., 2017. "A societal metabolism approach to job creation and renewable energy transitions in Catalonia," Energy Policy, Elsevier, vol. 108(C), pages 551-564.
    19. Nguyen, Ly & Kinnucan, Henry W., 2019. "The US solar panel anti-dumping duties versus uniform tariff," Energy Policy, Elsevier, vol. 127(C), pages 523-532.
    20. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.