IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp691-703.html
   My bibliography  Save this article

Does climate influence energy demand? A regional analysis

Author

Listed:
  • Shaik, Saleem
  • Yeboah, Osei-Agyeman

Abstract

The duality of cost minimization is used to examine the effects of climate change on US sectoral climatic regional energy demands from 1970 to 2014. The first order conditions of transcendental logarithm cost function provide sectorial compensated demands for energy. A system of demand share equations or sectorial compensated demand for energy is explained by exogenous prices, technology and distribution of climatic variables i.e. temperature and precipitation is estimated. The distribution includes the downside and upside first moment, i.e., mean and downside and upside second moment, i.e., variance. The estimated parameters are used to construct energy demand cross-price elasticities (CPE) and Allen elasticities of substitution (AES) for nine climatic regions. The Southwest, Northeast, and South are sensitive to rainfall distributions especially the transportation and industrial sectors while the Northeast, Central, and South are affected by temperature variations affecting residential and industrial sector energy use. The commercial sector uses the least energy because of improved technological changes. Consequently, there are high substitutions of commercial energy for both residential and industrial. The transportation sector has the least price and technical substitutions.

Suggested Citation

  • Shaik, Saleem & Yeboah, Osei-Agyeman, 2018. "Does climate influence energy demand? A regional analysis," Applied Energy, Elsevier, vol. 212(C), pages 691-703.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:691-703
    DOI: 10.1016/j.apenergy.2017.11.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barnett, A. H. & Reutter, Keith & Thompson, Henry, 1998. "Electricity substitution: some local industrial evidence," Energy Economics, Elsevier, vol. 20(4), pages 411-419, September.
    2. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    3. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    4. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    5. Caloghirou, Yannis D. & Mourelatos, Alexi G. & Thompson, Henry, 1997. "Industrial energy substitution during the 1980s in the Greek economy," Energy Economics, Elsevier, vol. 19(4), pages 476-491, October.
    6. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    7. Griffin, James M, 1977. "Inter-fuel Substitution Possibilities: A Translog Application to Intercountry Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 755-770, October.
    8. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    9. Mahmud, Syed F., 2000. "The energy demand in the manufacturing sector of Pakistan: some further results," Energy Economics, Elsevier, vol. 22(6), pages 641-648, December.
    10. Ochuodho, Thomas O. & Lantz, Van A. & Olale, Edward, 2016. "Economic impacts of climate change considering individual, additive, and simultaneous changes in forest and agriculture sectors in Canada: A dynamic, multi-regional CGE model analysis," Forest Policy and Economics, Elsevier, vol. 63(C), pages 43-51.
    11. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    12. Abdulaal, Ahmed & Moghaddass, Ramin & Asfour, Shihab, 2017. "Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response," Applied Energy, Elsevier, vol. 206(C), pages 206-221.
    13. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    14. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    15. Kuper, Gerard H. & van Soest, Daan P., 2003. "Path-dependency and input substitution: implications for energy policy modelling," Energy Economics, Elsevier, vol. 25(4), pages 397-407, July.
    16. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    17. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    18. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    19. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    20. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    21. Chichilnisky, Graciela & Heal, Geoffrey, 1993. "Energy-Capital Substitution: A General Equilibrium Analysis," MPRA Paper 8329, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Li & Yue Xia & Yang-Che Wu & Wing-Keung Wong, 2020. "The Sustainability of Energy Substitution in the Chinese Electric Power Sector," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    2. Helber Barros Gomes & Dirceu Luís Herdies & Luiz Fernando dos Santos & João Augusto Hackerott & Bruno Ribeiro Herdies & Fabrício Daniel dos Santos Silva & Maria Cristina Lemos da Silva & Mario Francis, 2024. "Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil," Energies, MDPI, vol. 17(19), pages 1-12, September.
    3. Colmenar, J.M. & Hidalgo, J.I. & Salcedo-Sanz, S., 2018. "Automatic generation of models for energy demand estimation using Grammatical Evolution," Energy, Elsevier, vol. 164(C), pages 183-193.
    4. Olympios, Andreas V. & Pantaleo, Antonio M. & Sapin, Paul & Markides, Christos N., 2020. "On the value of combined heat and power (CHP) systems and heat pumps incentralised and distributed heating systems: Lessons from multi-fidelitymodelling approaches," Applied Energy, Elsevier, vol. 274(C).
    5. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    6. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    7. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    8. Yeboah, Osei & Shaik, Saleem, 2021. "The influence of climate change on the demand for ethanol," Renewable Energy, Elsevier, vol. 164(C), pages 1559-1565.
    9. Avendaño-Vera, Constanza & Martinez-Soto, Aner & Marincioni, Valentina, 2020. "Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
    11. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    12. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    13. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    14. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    15. Shaik, Saleem, 2024. "Contribution of climate change to sector-source energy demand," Energy, Elsevier, vol. 294(C).
    16. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    17. Tamara Sofía Propato & Diego Abelleyra & María Semmartin & Santiago R. Verón, 2021. "Differential sensitivities of electricity consumption to global warming across regions of Argentina," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    18. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    19. Garcia-Rendon, John & Rey Londoño, Felipe & Arango Restrepo, Luis José & Bohorquez Correa, Santiago, 2023. "Sectoral analysis of electricity consumption during the COVID-19 pandemic: Evidence for unregulated and regulated markets in Colombia," Energy, Elsevier, vol. 268(C).
    20. Ai, Xian-Neng & Du, Yun-Fei & Li, Wei-Ming & Li, Hui & Liao, Hua, 2021. "The pattern of household energy transition," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thompson, Henry, 2006. "The applied theory of energy substitution in production," Energy Economics, Elsevier, vol. 28(4), pages 410-425, July.
    2. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    3. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    4. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    5. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    6. Roos K. Andadari & Henri L.F. de Groot & Piet Rietveld, 2012. "Production Externalities in the Wood Furniture Industry in Central Java," Tinbergen Institute Discussion Papers 12-072/3, Tinbergen Institute.
    7. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    8. Zha, Donglan & Ding, Ning, 2015. "Threshold characteristic of energy efficiency on substitution between energy and non-energy factors," Economic Modelling, Elsevier, vol. 46(C), pages 180-187.
    9. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    10. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    11. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    12. Thompson, Henry, 2016. "A physical production function for the US economy," Energy Economics, Elsevier, vol. 56(C), pages 185-189.
    13. Suho Bae, 2009. "The responses of manufacturing businesses to geographical differences in electricity prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(2), pages 453-472, June.
    14. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    15. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    16. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    17. repec:spo:wpmain:info:hdl:2441/1cpd872l2j8lb968d53pu5f30q is not listed on IDEAS
    18. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    19. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
    20. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    21. Frédéric Reynès, 2017. "The Cobb-Douglas function as a flexible function. Analysing the substitution between capital, labor and energy," Documents de Travail de l'OFCE 2017-12, Observatoire Francais des Conjonctures Economiques (OFCE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:691-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.