IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp194-199.html
   My bibliography  Save this article

Energy recovery from commercial-scale composting as a novel waste management strategy

Author

Listed:
  • Smith, Matthew M.
  • Aber, John D.

Abstract

This study reports operational information from a commercial-scale Aerated Static Pile (ASP) composting system with energy recovery, one of the few currently in operation globally. A description of this innovative system is followed by operational data on energy capture efficiency for 17 experimental trials with variable compost vapor and heat sink temperatures. Energy capture was directly and predictably related to the differential between compost vapor and heat sink temperatures, with energy capture ranging from 17,700 to 32,940 kJ/h with a compost vapor temperature range of 51–66 °C. A 5-day temperature lag time existed between compost pile formation, and when compost vapor temperatures were sufficiently high for energy recovery (≥50 °C). The energy recovery system also exhibited a time lag between the initiation of aeration and when the vapor reaching the heat exchanger reached pile vapor temperature. Consequently, future ASP composting sites employing an energy recovery system may have to alter aeration system design and schedules to compensate for any type of heating-up phase that reduces energy recovery.

Suggested Citation

  • Smith, Matthew M. & Aber, John D., 2018. "Energy recovery from commercial-scale composting as a novel waste management strategy," Applied Energy, Elsevier, vol. 211(C), pages 194-199.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:194-199
    DOI: 10.1016/j.apenergy.2017.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917315817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaroslav Bajko & Jan Fišer & Miroslav Jícha, 2019. "Condenser-Type Heat Exchanger for Compost Heat Recovery Systems," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Vittorio Sessa & Ramchandra Bhandari, 2023. "Composting Heat Recovery for Residential Consumption: An Assessment of Viability," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    3. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    4. Chojnacka, K. & Gorazda, K. & Witek-Krowiak, A. & Moustakas, K., 2019. "Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 485-498.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    4. Georgios Banias & Maria Batsioula & Charisios Achillas & Sotiris I. Patsios & Konstantinos N. Kontogiannopoulos & Dionysis Bochtis & Nicolas Moussiopoulos, 2020. "A Life Cycle Analysis Approach for the Evaluation of Municipal Solid Waste Management Practices: The Case Study of the Region of Central Macedonia, Greece," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    5. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    6. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    7. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Ahmad, Syaza I. & Ho, Wai Shin & Hassim, Mimi H. & Elagroudy, Sherien & Abdul Kohar, Rabiatul Adawiyyah & Bong, Cassendra Phun Chien & Hashim, Haslenda & Rashid, Roslina, 2020. "Development of quantitative SHE index for waste to energy technology selection," Energy, Elsevier, vol. 191(C).
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    10. Sarbassov, Yerbol & Venetis, Christos & Aiymbetov, Berik & Abylkhani, Bexultan & Yagofarova, Almira & Tokmurzin, Diyar & Anthony, Edward J. & Inglezakis, Vassilis J., 2020. "Municipal solid waste management and greenhouse gas emissions at international airports: A case study of Astana International Airport," Journal of Air Transport Management, Elsevier, vol. 85(C).
    11. Zhang, Yuwei & Zhang, Yingjie & Zhu, Hengxi & Zhou, Pengxiang & Liu, Shuai & Lei, Xiaoli & Li, Yanhong & Li, Bin & Ning, Ping, 2022. "Life cycle assessment of pollutants and emission reduction strategies based on the energy structure of the nonferrous metal industry in China," Energy, Elsevier, vol. 261(PA).
    12. Henrieta Pavolová & Roman Lacko & Zuzana Hajduová & Zuzana Šimková & Martin Rovňák, 2020. "The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    13. Maria Vetrova, 2021. "Closed Product Life Cycle as a Basis of the Circular Economy," GATR Journals jber198, Global Academy of Training and Research (GATR) Enterprise.
    14. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Rui Wang & Qing Xu & Chenyu He & Xinyi Liu & Zhenyu Feng & Luxiaohe Zhang & Jun Gao, 2023. "Analysis of Hazardous Waste Management Elements in Oil and Gas Enterprises Based on the Life-Cycle Management Concept," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:194-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.