IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp332-343.html
   My bibliography  Save this article

Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

Author

Listed:
  • Ahmadi Atouei, Saeed
  • Ranjbar, Ali Akbar
  • Rezania, Alireza

Abstract

Due to limitations in performance of thermoelectric materials, applying two-stage thermoelectric generator (TTEG) has been proposed to improve the performance of thermoelectric generator (TEG) system. In this paper, a novel prototype of a two-stage thermoelectric generator system is investigated experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source of the second stage TEGs. In the second stage, five smaller TEG modules are installed around the PCM with individual heat sinks for cooling with natural convection. In order to have a comparison between a common TEG system and the proposed two-stage TEG system, a one-stage thermoelectric generator with forced air cooling system has been tested. The results show the proposed TTEG system averagely generates 27% more electrical potential than the one-stage TEG system. Moreover, when the heater is off, the TTEG supplies 0.377 V open circuit voltage in average for about 7900 s, while the one-stage TEG generates this amount of voltage just for 2100 s. Therefore, the proposed design makes TEG systems more suitable for wireless sensor applications when the heat source does not provide steady thermal energy. In this study, four different patterns of thermal power applied to the TTEG system are considered. These patterns are used to simulate various transient thermal boundary conditions imposed to the system.

Suggested Citation

  • Ahmadi Atouei, Saeed & Ranjbar, Ali Akbar & Rezania, Alireza, 2017. "Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials," Applied Energy, Elsevier, vol. 208(C), pages 332-343.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:332-343
    DOI: 10.1016/j.apenergy.2017.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    2. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    3. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
    4. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    5. Manikandan, S. & Kaushik, S.C., 2016. "The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator," Energy, Elsevier, vol. 100(C), pages 227-237.
    6. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    7. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    8. Lin, Shumin & Ma, Ming & Wang, Jun & Yu, Jianlin, 2016. "Experiment investigation of a two-stage thermoelectric cooler under current pulse operation," Applied Energy, Elsevier, vol. 180(C), pages 628-636.
    9. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    10. Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.
    11. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousefi, Esmaeil & Kayhani, Mohammad Hassan & Abbas Nejad, Ali & Nikkhoo, Amirfarhang, 2024. "Experimental investigation of the external load effect on thermoelectric generator discharge time in a low power energy harvesting system," Energy, Elsevier, vol. 293(C).
    2. Alghamdi, Hisham & Maduabuchi, Chika & Okoli, Kingsley & Albaker, Abdullah & Makki, Emad & Alghassab, Mohammed & Alobaid, Mohammad & Alkhedher, Mohammad, 2023. "Pioneering sustainable power: Harnessing material innovations in double stage segmented thermoelectric generators for optimal 4E performance," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    2. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    3. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    4. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    5. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    6. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    7. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    8. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    9. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    10. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    11. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Wang, Xiangxiang, 2014. "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, Elsevier, vol. 77(C), pages 489-498.
    12. Han, Lipeng & Xie, Shaolei & Liu, Shang & Sun, Jinhe & Jia, Yongzhong & Jing, Yan, 2017. "Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 762-767.
    13. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    14. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    15. Massaguer Colomer, Albert & Massaguer, Eduard & Pujol, Toni & Comamala, Martí & Montoro, Lino & González, J.R., 2015. "Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control," Applied Energy, Elsevier, vol. 154(C), pages 709-717.
    16. Zhang, T., 2016. "New thinking on modeling of thermoelectric devices," Applied Energy, Elsevier, vol. 168(C), pages 65-74.
    17. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    18. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    19. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:332-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.