IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp114-122.html
   My bibliography  Save this article

Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5

Author

Listed:
  • Sebestyén, Z.
  • Barta-Rajnai, E.
  • Bozi, J.
  • Blazsó, M.
  • Jakab, E.
  • Miskolczi, N.
  • Sója, J.
  • Czégény, Zs.

Abstract

The catalytic effect of HZSM-5 zeolite was studied on the thermal decomposition of model waste mixtures of plastics (composed of PE, PP, and PET) and biomass (composed of newspaper, cardboard, and pine sawdust). The influence of temperature and catalyst ratio as well as the hindering effect of cellulose and lignin on the catalytic decomposition of plastic waste were studied applying analytical pyrolysis at low and high heating rate by thermogravimetry/mass spectrometry (TG/MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), respectively. The products of laboratory scale batch pyrolysis and thermo-catalytic pyrolysis were analyzed in details and compared. HZSM-5 catalyst reduced the thermal stability of plastic waste, but the catalytic effect was blocked when 50% cellulose or 10% lignin were mixed in the plastic waste. Principal component analysis (PCA) has been applied to reveal correlations between the composition of pyrolysis products, pyrolysis temperature and proportion of the applied catalyst. It was established that the hindering effect of biomass could be compensated by applying higher catalyst ratio. In a batch reactor, the use of HZSM-5 catalyst led to a significant increase in the yields of volatiles (both gases and pyrolysis oil); moreover aromatization or isomerization effects have been observed. Aromatic compounds were produced to a reduced extent by thermo-catalytic pyrolysis of biomass-containing plastic waste compared to that of plastic waste indicating that the cellulose and lignin components of the waste lower the HZSM-5 catalyst activity.

Suggested Citation

  • Sebestyén, Z. & Barta-Rajnai, E. & Bozi, J. & Blazsó, M. & Jakab, E. & Miskolczi, N. & Sója, J. & Czégény, Zs., 2017. "Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5," Applied Energy, Elsevier, vol. 207(C), pages 114-122.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:114-122
    DOI: 10.1016/j.apenergy.2017.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    2. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    3. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Sophonrat, Nanta & Sandström, Linda & Zaini, Ilman Nuran & Yang, Weihong, 2018. "Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates," Applied Energy, Elsevier, vol. 229(C), pages 314-325.
    4. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    5. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    6. Salvilla, John Nikko V. & Ofrasio, Bjorn Ivan G. & Rollon, Analiza P. & Manegdeg, Ferdinand G. & Abarca, Ralf Ruffel M. & de Luna, Mark Daniel G., 2020. "Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production," Applied Energy, Elsevier, vol. 279(C).
    7. Jian Shi & Hao An & Yali Cao & Cheli Wang, 2022. "Characterization Studies for Derived Biodiesel from the Fluid Catalytic Cracking (FCC) of Waste Cooking Oil through a Fixed Fluidized Bed (FFB)," Energies, MDPI, vol. 15(19), pages 1-11, September.
    8. Li, Chao & Sun, Yifan & Li, Qingyang & Zhang, Lijun & Zhang, Shu & Wang, Huaisheng & Hu, Guangzhi & Hu, Xun, 2022. "Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose," Renewable Energy, Elsevier, vol. 189(C), pages 139-151.
    9. Zhu, Liang & Cai, Wei & Li, Jie & Chen, Dengyu & Ma, Zhongqing, 2024. "Highly selective production of light aromatics from co-catalytic fast pyrolysis of pre-deoxygenated biomass and hydrogen-rich polyethylene using a dual-catalyst system," Energy, Elsevier, vol. 296(C).
    10. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Abbas-Abadi, Mehrdad Seifali & Van Geem, Kevin M. & Fathi, Maryam & Bazgir, Hossein & Ghadiri, Mohammad, 2021. "The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument," Energy, Elsevier, vol. 232(C).
    12. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    13. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    14. Wang, Biao & Chen, Yasen & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field," Energy, Elsevier, vol. 293(C).
    15. Li, Jie & Yu, Di & Pan, Lanjia & Xu, Xinhai & Wang, Xiaonan & Wang, Yin, 2023. "Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications," Applied Energy, Elsevier, vol. 346(C).
    16. Duan, Dengle & Feng, Zhiqiang & Dong, Xiaoyong & Chen, Xiaoru & Zhang, Yayun & Wan, Kun & Wang, Yunpu & Wang, Qin & Xiao, Gengsheng & Liu, Huifan & Ruan, Roger, 2021. "Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Wenliang & Li, Xinping & Ye, Dan & Cai, LiPing & Shi, Sheldon Q., 2018. "Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts," Renewable Energy, Elsevier, vol. 121(C), pages 146-152.
    3. Schulzke, T. & Westermeyer, J. & Giani, H. & Hornsby, C., 2018. "Combustion of Refined Renewable Biomass Fuel (RRBF) in a bubbling fluidized bed," Renewable Energy, Elsevier, vol. 124(C), pages 84-94.
    4. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    5. Danfeng Zhang & Xin Wang & Liang Zhao & Huaqing Xie & Chen Guo & Feizhou Qian & Hui Dong & Yun Hu, 2023. "Numerical Investigation on Heat Transfer and Flow Resistance Characteristics of Superheater in Hydrocracking Heat Recovery Steam Generator," Energies, MDPI, vol. 16(17), pages 1-15, August.
    6. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    7. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    8. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    9. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    10. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    11. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    12. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    13. Zhijun Zhang & Shujuan Sui & Fengqiang Wang & Qingwen Wang & Charles U. Pittman, 2013. "Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid," Energies, MDPI, vol. 6(9), pages 1-20, September.
    14. Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
    15. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    16. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    17. Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
    18. Jia, Liangyuan & Shao, Wanyun & Wang, Jingjing & Qian, Yingying & Chen, Yingquan & Yang, Qingchun, 2024. "Machine learning-aided prediction of bio-BTX and olefins production from zeolite-catalyzed biomass pyrolysis," Energy, Elsevier, vol. 306(C).
    19. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:114-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.