IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp1040-1061.html
   My bibliography  Save this article

Concrete solar collectors for façade integration: An experimental and numerical investigation

Author

Listed:
  • O'Hegarty, Richard
  • Kinnane, Oliver
  • McCormack, Sarah J.

Abstract

Precast concrete cladding systems can be converted into concrete solar collectors by embedding pipes within the exposed concrete, providing a unique building integrated solar thermal solution. Past research of non-integrated, roof-attached concrete solar collectors have largely focused on experimental studies in high temperature climates and/or simulation studies using simplified 1D and 2D models. This study (1) Experimentally investigates the performance of a façade integrated concrete solar collector in a mid-latitude European climate (Dublin) and (2) Develops and validates a 3D numerical model which is then used to predict the performance of other façade integrated concrete solar collectors in other European climates. The study primarily quantifies the performance in relation to the energy output and the solar fraction. The experimental set-up of the concrete solar collector is designed to represent a south facing façade installation. The experimental results showed that one quarter of the annual hot water demand of a single occupant dwelling could be provided using 1m2 of concrete solar collectors with spring and autumn months producing the highest daily energy outputs; attributed to the vertical orientation of the concrete solar collectors. A 3D numerical model of the vertically installed concrete solar collector is developed in COMSOL Multiphysics and validated against the experimentally measured results. The validated model is used to expand the study to different collectors and systems, as well as two additional contrasting Northern and Southern European climates where precast concrete is a popular cladding material, namely Helsinki and Sofia. The simulation results showed that the solar absorptance, flow rate, collector area and pipe length have a significant influence on the performance of the concrete solar collector system. Annual solar fractions of 20% (Helsinki), 24% (Dublin) and 30% (Sofia) are predicted for a small apartment building using a façade integrated concrete solar collector. The concrete solar collectors presented a negligible influence on the interior environment provided sufficient insulation is located at the back of the concrete absorber, as would be typical of a precast concrete sandwich panel construction.

Suggested Citation

  • O'Hegarty, Richard & Kinnane, Oliver & McCormack, Sarah J., 2017. "Concrete solar collectors for façade integration: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 206(C), pages 1040-1061.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1040-1061
    DOI: 10.1016/j.apenergy.2017.08.239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2015. "A study of the impact of building geometry on the thermal performance of road pavement solar collectors," Energy, Elsevier, vol. 93(P2), pages 2614-2630.
    2. Kumar, A. & Singh, U. & Srivastava, A. & Tiwari, G. N., 1981. "Thermal design of a roof as an inexpensive solar collector/storage system," Applied Energy, Elsevier, vol. 8(4), pages 255-267, August.
    3. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2017. "A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application," Applied Energy, Elsevier, vol. 186(P3), pages 436-449.
    4. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    5. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    6. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    7. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    8. Leone, Giuliana & Beccali, Marco, 2016. "Use of finite element models for estimating thermal performance of façade-integrated solar thermal collectors," Applied Energy, Elsevier, vol. 171(C), pages 392-404.
    9. D’Antoni, Matteo & Saro, Onorio, 2012. "Massive Solar-Thermal Collectors: A critical literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3666-3679.
    10. Hussein, Ahmed Kadhim, 2015. "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 460-476.
    11. Rodríguez-Sánchez, D. & Belmonte, J.F. & Izquierdo-Barrientos, M.A. & Molina, A.E. & Rosengarten, G. & Almendros-Ibáñez, J.A., 2014. "Solar energy captured by a curved collector designed for architectural integration," Applied Energy, Elsevier, vol. 116(C), pages 66-75.
    12. Motte, Fabrice & Notton, Gilles & Cristofari, Christian & Canaletti, Jean-Louis, 2013. "Design and modelling of a new patented thermal solar collector with high building integration," Applied Energy, Elsevier, vol. 102(C), pages 631-639.
    13. Chaurasia, P.B.L, 2000. "Solar water heaters based on concrete collectors," Energy, Elsevier, vol. 25(8), pages 703-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    2. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    3. Samiya Aamir Al-Mabsali & Hassam Nasarullah Chaudhry & Mehreen Saleem Gul, 2019. "Numerical Investigation on Heat Pipe Spanwise Spacing to Determine Optimum Configuration for Passive Cooling of Photovoltaic Panels," Energies, MDPI, vol. 12(24), pages 1-14, December.
    4. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    5. Alessia Aquilanti & Ignacio Peralta & Eduardus A. B. Koenders & Giovanni Di Nicola, 2023. "A Brief Review of the Latest Advancements of Massive Solar Thermal Collectors," Energies, MDPI, vol. 16(16), pages 1-19, August.
    6. Elguezabal, P. & Lopez, A. & Blanco, J.M. & Chica, J.A., 2020. "CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade," Renewable Energy, Elsevier, vol. 146(C), pages 1766-1780.
    7. Kareem, M.W. & Habib, Khairul & Pasha, Amjad A. & Irshad, Kashif & Afolabi, L.O. & Saha, Bidyut Baran, 2022. "Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    2. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    3. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    4. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    5. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    6. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    7. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    8. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    9. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    10. Pascual-Muñoz, P. & Castro-Fresno, D. & Serrano-Bravo, P. & Alonso-Estébanez, A., 2013. "Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors," Applied Energy, Elsevier, vol. 111(C), pages 324-332.
    11. Anna Bać & Magdalena Nemś & Artur Nemś & Jacek Kasperski, 2019. "Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    12. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2017. "A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application," Applied Energy, Elsevier, vol. 186(P3), pages 436-449.
    13. Behnam Ghorbani & Arul Arulrajah & Guillermo A. Narsilio & Suksun Horpibulsuk & Apinun Buritatum, 2023. "Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    14. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    15. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    16. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    19. Elguezabal, P. & Lopez, A. & Blanco, J.M. & Chica, J.A., 2020. "CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade," Renewable Energy, Elsevier, vol. 146(C), pages 1766-1780.
    20. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1040-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.