IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp582-593.html
   My bibliography  Save this article

Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions

Author

Listed:
  • Elsanusi, Osama Ahmed
  • Roy, Murari Mohon
  • Sidhu, Manpreet Singh

Abstract

The present work aims to investigate emulsion fuel characteristics with different levels of water concentration and their effects on performance and emissions of a light-duty diesel engine. The engine was operated at three engine speeds of 1000, 2100 and 3000rpm, respectively. At each speed, three loads (20%, 50%, and 80%) were applied. Diesel and biodiesel-diesel blends up to 40 by step of 10 were emulsified with three different levels of water concentration (5%, 10% and 15%). Emulsifiers Sorbitan Monoleate (Span 80) and Polyoxyethylene Sorbitan Monoleate (Tween 80) were used to prepare emulsion fuels. Fuel properties, stability and particle size distribution were measured. Engine performance (brake-specific fuel consumption (BSFC) and brake thermal efficiency (BTE)) and emissions were investigated. An increase in BTE was observed with increased water content in emulsions. A reduction in exhaust gas temperature (EGT) with an increase in water content was achieved. The nitrogen oxides (NOx) and smoke emissions were also significantly reduced with the increase in water content in the emulsion compared to their bases. Emulsion fuel containing a higher water content revealed a considerable increase in carbon monoxide (CO) emissions.

Suggested Citation

  • Elsanusi, Osama Ahmed & Roy, Murari Mohon & Sidhu, Manpreet Singh, 2017. "Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions," Applied Energy, Elsevier, vol. 203(C), pages 582-593.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:582-593
    DOI: 10.1016/j.apenergy.2017.06.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    3. Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
    4. Reham, S.S. & Masjuki, H.H. & Kalam, M.A. & Shancita, I. & Rizwanul Fattah, I.M. & Ruhul, A.M., 2015. "Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1566-1579.
    5. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    6. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    7. Yang, W.M. & An, H. & Chou, S.K. & Chua, K.J. & Mohan, B. & Sivasankaralingam, V. & Raman, V. & Maghbouli, A. & Li, J., 2013. "Impact of emulsion fuel with nano-organic additives on the performance of diesel engine," Applied Energy, Elsevier, vol. 112(C), pages 1206-1212.
    8. Debnath, Biplab K. & Saha, Ujjwal K. & Sahoo, Niranjan, 2015. "A comprehensive review on the application of emulsions as an alternative fuel for diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 196-211.
    9. Husnawan, M. & Masjuki, H.H. & Mahlia, T.M.I. & Saifullah, M.G., 2009. "Thermal analysis of cylinder head carbon deposits from single cylinder diesel engine fueled by palm oil-diesel fuel emulsions," Applied Energy, Elsevier, vol. 86(10), pages 2107-2113, October.
    10. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    11. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    12. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    13. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    14. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    15. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    16. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Emission analysis of a modern Tier 4 DI diesel engine fueled by biodiesel-diesel blends with a cold flow improver (Wintron Synergy) at multiple idling conditions," Applied Energy, Elsevier, vol. 179(C), pages 45-54.
    17. Guo, Zuogang & Wang, Shurong & Wang, Xiangyu, 2014. "Stability mechanism investigation of emulsion fuels from biomass pyrolysis oil and diesel," Energy, Elsevier, vol. 66(C), pages 250-255.
    18. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    19. Nguyen, Kim-Bao & Dan, Tomohisa & Asano, Ichiro, 2015. "Effect of double injection on combustion, performance and emissions of Jatropha water emulsion fueled direct-injection diesel engine," Energy, Elsevier, vol. 80(C), pages 746-755.
    20. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sidhu, Manpreet Singh & Roy, Murari Mohon & Wang, Wilson, 2018. "Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine," Applied Energy, Elsevier, vol. 230(C), pages 148-159.
    2. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    3. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    4. Wang, Zhaowen & Shi, Shuguo & Huang, Sheng & Tang, Jie & Du, Tao & Cheng, Xiaobei & Huang, Ronghua & Chen, Jyh-Yuan, 2018. "Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 397-407.
    5. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    6. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    7. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    8. Reham, S.S. & Masjuki, H.H. & Kalam, M.A. & Shancita, I. & Rizwanul Fattah, I.M. & Ruhul, A.M., 2015. "Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1566-1579.
    9. Hasannuddin, A.K. & Yahya, W.J. & Sarah, S. & Ithnin, A.M. & Syahrullail, S. & Sugeng, D.A. & Razak, I.F.A. & Abd Fatah, A.Y. & Aqma, W.S. & Rahman, A.H.A. & Ramlan, N.A., 2018. "Performance, emissions and carbon deposit characteristics of diesel engine operating on emulsion fuel," Energy, Elsevier, vol. 142(C), pages 496-506.
    10. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Calder, Jorge & Roy, Murari Mohon & Wang, Wilson, 2018. "Performance and emissions of a diesel engine fueled by biodiesel-diesel blends with recycled expanded polystyrene and fuel stabilizing additive," Energy, Elsevier, vol. 149(C), pages 204-212.
    13. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    14. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    15. Jeeban Poudel & Sujeeta Karki & Nawaraj Sanjel & Malesh Shah & Sea Cheon Oh, 2017. "Comparison of Biodiesel Obtained from Virgin Cooking Oil and Waste Cooking Oil Using Supercritical and Catalytic Transesterification," Energies, MDPI, vol. 10(4), pages 1-14, April.
    16. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    17. Leng, Lijian & Han, Pei & Yuan, Xingzhong & Li, Jun & Zhou, Wenguang, 2018. "Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges," Energy, Elsevier, vol. 153(C), pages 1061-1072.
    18. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    19. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    20. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:582-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.