Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.11.123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
- Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, vol. 86(10), pages 2047-2055, October.
- Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
- Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
- Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
- Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
- Gil, Antoni & Oró, Eduard & Peiró, Gerard & Álvarez, Servando & Cabeza, Luisa F., 2013. "Material selection and testing for thermal energy storage in solar cooling," Renewable Energy, Elsevier, vol. 57(C), pages 366-371.
- Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
- Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
- Calise, F. & Palombo, A. & Vanoli, L., 2010. "Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments," Applied Energy, Elsevier, vol. 87(2), pages 524-540, February.
- Zipf, Verena & Neuhäuser, Anton & Willert, Daniel & Nitz, Peter & Gschwander, Stefan & Platzer, Werner, 2013. "High temperature latent heat storage with a screw heat exchanger: Design of prototype," Applied Energy, Elsevier, vol. 109(C), pages 462-469.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Isidoro Lillo-Bravo & Elena Pérez-Aparicio & Natividad Sancho-Caparrini & Manuel Antonio Silva-Pérez, 2018. "Benefits of Medium Temperature Solar Concentration Technologies as Thermal Energy Source of Industrial Processes in Spain," Energies, MDPI, vol. 11(11), pages 1-30, October.
- Nada, S.A. & El-Nagar, D.H., 2018. "Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules," Renewable Energy, Elsevier, vol. 127(C), pages 630-641.
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
- Ding, Zhixiong & Wu, Wei, 2024. "A phase-change-material-assisted absorption thermal battery for space heating under low ambient temperatures," Energy, Elsevier, vol. 299(C).
- Jesús Cerezo & Fernando Lara & Rosenberg J. Romero & Antonio Rodríguez, 2021. "Analysis and Simulation of an Absorption Cooling System Using a Latent Heat Storage Tank and a Tempering Valve," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
- Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
- Sharma, S. & Micheli, L. & Chang, W. & Tahir, A.A. & Reddy, K.S. & Mallick, T.K., 2017. "Nano-enhanced Phase Change Material for thermal management of BICPV," Applied Energy, Elsevier, vol. 208(C), pages 719-733.
- Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
- Palomba, Valeria & Brancato, Vincenza & Frazzica, Andrea, 2017. "Experimental investigation of a latent heat storage for solar cooling applications," Applied Energy, Elsevier, vol. 199(C), pages 347-358.
- Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
- Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
- Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
- Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
- Sebastian Gamisch & Stefan Gschwander & Stefan J. Rupitsch, 2021. "Numerical and Experimental Investigation of Wire Cloth Heat Exchanger for Latent Heat Storages," Energies, MDPI, vol. 14(22), pages 1-30, November.
- Lubis, Arnas & Jeong, Jongsoo & Giannetti, Niccolo & Yamaguchi, Seiichi & Saito, Kiyoshi & Yabase, Hajime & Alhamid, Muhammad I. & Nasruddin,, 2018. "Operation performance enhancement of single-double-effect absorption chiller," Applied Energy, Elsevier, vol. 219(C), pages 299-311.
- Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
- Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
- Pointner, Harald & Steinmann, Wolf-Dieter, 2016. "Experimental demonstration of an active latent heat storage concept," Applied Energy, Elsevier, vol. 168(C), pages 661-671.
- Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.
- Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
- Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
More about this item
Keywords
Phase change material; Solar cooling; Sensible heat; Latent heat; Thermal energy storage; Triple effect absorption chiller;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:160-177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.