IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp272-280.html
   My bibliography  Save this article

Transformation of heavy metals in lignite during supercritical water gasification

Author

Listed:
  • Chen, Guifang
  • Yang, Xinfei
  • Chen, Shouyan
  • Dong, Yong
  • Cui, Lin
  • Zhang, Yong
  • Wang, Peng
  • Zhao, Xiqiang
  • Ma, Chunyuan

Abstract

Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

Suggested Citation

  • Chen, Guifang & Yang, Xinfei & Chen, Shouyan & Dong, Yong & Cui, Lin & Zhang, Yong & Wang, Peng & Zhao, Xiqiang & Ma, Chunyuan, 2017. "Transformation of heavy metals in lignite during supercritical water gasification," Applied Energy, Elsevier, vol. 187(C), pages 272-280.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:272-280
    DOI: 10.1016/j.apenergy.2016.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    2. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    3. Sen, Pallabi & Sen, Kinnar & Diwekar, Urmila M., 2016. "A multi-objective optimization approach to optimal sensor location problem in IGCC power plants," Applied Energy, Elsevier, vol. 181(C), pages 527-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    2. Chen, Zhewen & Zhang, Xiaosong & Han, Wei & Gao, Lin & Li, Sheng, 2018. "A power generation system with integrated supercritical water gasification of coal and CO2 capture," Energy, Elsevier, vol. 142(C), pages 723-730.
    3. Li, Hongjun & Chang, Qinghua & Gao, Rui & Dai, Zhenghua & Chen, Xueli & Yu, Guangsuo & Wang, Fuchen, 2018. "Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction," Applied Energy, Elsevier, vol. 225(C), pages 559-569.
    4. Yang, Yuxuan & Zhong, Zhaoping & Li, Jiefei & Du, Haoran & Li, Qian & Zheng, Xiang & Qi, Renzhi & Zhang, Shan & Ren, Pengkun & Li, Zhaoying, 2023. "Experimental and theoretical-based study of heavy metal capture by modified silica-alumina-based materials during thermal conversion of coal at high temperature combustion," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    2. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    3. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    4. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    5. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    6. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
    7. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    8. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    9. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    10. Adnan, Muflih A. & Hidayat, Arif & Hossain, Mohammad M. & Muraza, Oki, 2021. "Transformation of low-rank coal to clean syngas and power via thermochemical route," Energy, Elsevier, vol. 236(C).
    11. Aydin, Ebubekir Siddik & Yucel, Ozgun & Sadikoglu, Hasan, 2017. "Development of a semi-empirical equilibrium model for downdraft gasification systems," Energy, Elsevier, vol. 130(C), pages 86-98.
    12. Yan, Pei & Zheng, Chenghang & Zhu, Weizhuo & Xu, Xi & Gao, Xiang & Luo, Zhongyang & Ni, Mingjiang & Cen, Kefa, 2016. "An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs," Applied Energy, Elsevier, vol. 164(C), pages 28-35.
    13. Borello, D. & Cedola, L. & Frangioni, G.V. & Meloni, R. & Venturini, P. & De Filippis, P. & de Caprariis, B., 2016. "Development of a numerical model for biomass packed bed pyrolysis based on experimental validation," Applied Energy, Elsevier, vol. 164(C), pages 956-962.
    14. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    15. Usama Ahmed & Muhammad Arsalan Hussain & Muhammad Bilal & Hassan Zeb & Umer Zahid & Sagheer A. Onaizi & Abdul Gani Abdul Jameel, 2021. "Utilization of Low-Rank Coals for Producing Syngas to Meet the Future Energy Needs: Technical and Economic Analysis," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    16. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    17. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    18. Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).
    19. Luo, Yimo & Chen, Yi & Yang, Hongxing & Wang, Yuanhao, 2017. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model," Applied Energy, Elsevier, vol. 194(C), pages 399-409.
    20. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:272-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.