IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v167y2016icp420-431.html
   My bibliography  Save this article

Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system

Author

Listed:
  • Teng, Fei
  • Aunedi, Marko
  • Strbac, Goran

Abstract

This paper presents an advanced stochastic analytical framework to quantify the benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission and the integration cost of renewable energy sources (RES) in the future UK electricity system. The typical operating patterns of EVs/HPs as well as the potential flexibility to perform demand shifting and frequency response are sourced from recent UK trials. A comprehensive range of case studies across several future UK scenarios suggest that smart EVs/HPs could deliver measurable carbon reductions by enabling a more efficient operation of the electricity system, while at the same time making the integration of electrified transport and heating demand significantly less carbon intensive. The second set of case studies establish that smart EVs/HPs have significant potential to support cost-efficient RES integration by reducing: (a) RES balancing cost, (b) cost of required back-up generation capacity, and (c) cost of additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES output while achieving the same emission target. Frequency response provision from EVs/HPs could significantly enhance both the carbon benefit and the RES integration benefit of smart EVs/HPs.

Suggested Citation

  • Teng, Fei & Aunedi, Marko & Strbac, Goran, 2016. "Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system," Applied Energy, Elsevier, vol. 167(C), pages 420-431.
  • Handle: RePEc:eee:appene:v:167:y:2016:i:c:p:420-431
    DOI: 10.1016/j.apenergy.2015.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    2. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    3. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    4. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    5. Calnan, P. & Deane, J.P. & Ó Gallachóir, B.P., 2013. "Modelling the impact of EVs on electricity generation, costs and CO2 emissions," Energy Policy, Elsevier, vol. 61(C), pages 230-237.
    6. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    7. Pudjianto, Danny & Djapic, Predrag & Aunedi, Marko & Gan, Chin Kim & Strbac, Goran & Huang, Sikai & Infield, David, 2013. "Smart control for minimizing distribution network reinforcement cost due to electrification," Energy Policy, Elsevier, vol. 52(C), pages 76-84.
    8. Drysdale, Brian & Wu, Jianzhong & Jenkins, Nick, 2015. "Flexible demand in the GB domestic electricity sector in 2030," Applied Energy, Elsevier, vol. 139(C), pages 281-290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    4. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    5. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    6. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    7. Quan Lyu & Haoyan Gong & Nan Yang & Xiandong Xu & Na Zhang & Haixia Wang, 2019. "An Evaluation Method of Wind Power Integration in Power Systems with Flexible Combined Heat and Power Plant," Energies, MDPI, vol. 12(21), pages 1-17, October.
    8. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
    9. Ryosuke Kataoka & Kazuhiko Ogimoto & Yumiko Iwafune, 2021. "Marginal Value of Vehicle-to-Grid Ancillary Service in a Power System with Variable Renewable Energy Penetration and Grid Side Flexibility," Energies, MDPI, vol. 14(22), pages 1-21, November.
    10. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    11. Heuberger, Clara F. & Bains, Praveen K. & Mac Dowell, Niall, 2020. "The EV-olution of the power system: A spatio-temporal optimisation model to investigate the impact of electric vehicle deployment," Applied Energy, Elsevier, vol. 257(C).
    12. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
    13. Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
    14. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    15. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    16. Liu, Miaomiao & Liu, Ming & Wang, Yu & Chen, Weixiong & Yan, Junjie, 2021. "Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat–power decoupling," Energy, Elsevier, vol. 229(C).
    17. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    18. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    19. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    20. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:167:y:2016:i:c:p:420-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.