IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp273-281.html
   My bibliography  Save this article

A dynamic programming model for environmental investment decision-making in coal mining

Author

Listed:
  • Yu, Shiwei
  • Gao, Siwei
  • sun, Han

Abstract

Coal is the widespread fossil fuel on earth. It provides the necessary material foundation for economic development of a country. However, coal mining activities cause a lot of environmental impacts that are hazardous to the health of citizens in mining regions and place costs on the government. According to government laws and regulations, coal mines should invest in related pollution treatment projects to meet the emission standards. How to allocate the limited resources among a set of pollutant treatment projects to minimize the total losses, including penal loss and vacancy loss, from an investment perspective is a typical decision-making problem. Therefore, the present study proposed a discrete dynamic programming procedure to provide an effective solution for decision-making in treatment project investment. Furthermore, a case study involving the Laojuntang coal mine of Zhengzhou Coal Industry (Group) of China on the treatment project investment problem was implemented using the proposed model. The results demonstrate that the proposed model is effective and applicable for environmental investment decision-making at a typical coal mine in terms of minimizing the total losses.

Suggested Citation

  • Yu, Shiwei & Gao, Siwei & sun, Han, 2016. "A dynamic programming model for environmental investment decision-making in coal mining," Applied Energy, Elsevier, vol. 166(C), pages 273-281.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:273-281
    DOI: 10.1016/j.apenergy.2015.09.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurate Jaraite & Andrius Kazukauskas & Tommy Lundgren, 2014. "The effects of climate policy on environmental expenditure and investment: evidence from Sweden," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 3(2), pages 148-166, July.
    2. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    3. Lin, Tyrone T. & Ko, Chuan-Chuan & Yeh, Hsin-Ni, 2007. "Applying real options in investment decisions relating to environmental pollution," Energy Policy, Elsevier, vol. 35(4), pages 2426-2432, April.
    4. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    5. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    6. Julia Tsai & Victoria Chen & M. Beck & Jining Chen, 2004. "Stochastic Dynamic Programming Formulation for a Wastewater Treatment Decision-Making Framework," Annals of Operations Research, Springer, vol. 132(1), pages 207-221, November.
    7. Martinelli, Gabriele & Eidsvik, Jo & Hauge, Ragnar, 2013. "Dynamic decision making for graphical models applied to oil exploration," European Journal of Operational Research, Elsevier, vol. 230(3), pages 688-702.
    8. Wu, Gang & Wei, Yi-Ming & Nielsen, Chris & Lu, Xi & McElroy, Michael B., 2012. "A dynamic programming model of China's strategic petroleum reserve: General strategy and the effect of emergencies," Energy Economics, Elsevier, vol. 34(4), pages 1234-1243.
    9. Škugor, Branimir & Deur, Joško, 2015. "Dynamic programming-based optimisation of charging an electric vehicle fleet system represented by an aggregate battery model," Energy, Elsevier, vol. 92(P3), pages 456-465.
    10. Li, Guang & Weiss, George & Mueller, Markus & Townley, Stuart & Belmont, Mike R., 2012. "Wave energy converter control by wave prediction and dynamic programming," Renewable Energy, Elsevier, vol. 48(C), pages 392-403.
    11. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
    12. Bai, Y. & Dahl, C.A. & Zhou, D.Q. & Zhou, P., 2014. "Stockpile strategy for China׳s emergency oil reserve: A dynamic programming approach," Energy Policy, Elsevier, vol. 73(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Izabela Jonek-Kowalska & Marian Turek, 2017. "Dependence of Total Production Costs on Production and Infrastructure Parameters in the Polish Hard Coal Mining Industry," Energies, MDPI, vol. 10(10), pages 1-22, September.
    3. Linfeng Li & Miyuan Shan & Ying Li & Sheng Liang, 2017. "A Dynamic Programming Model for Operation Decision-Making in Bicycle Sharing Systems under a Sustainable Development Perspective," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    4. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    5. Amiri, Leyla & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2018. "Effect of buoyancy-driven natural convection in a rock-pit mine air preconditioning system acting as a large-scale thermal energy storage mass," Applied Energy, Elsevier, vol. 221(C), pages 268-279.
    6. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren & William L. Weber, 2018. "Time substitution for environmental performance: The case of Swedish manufacturing," Empirical Economics, Springer, vol. 54(1), pages 129-152, February.
    7. Xin Nie & Jianxian Wu & Han Wang & Lihua Li & Chengdao Huang & Weijuan Li & Zhuxia Wei, 2022. "Booster or Stumbling Block? The Role of Environmental Regulation in the Coupling Path of Regional Innovation under the Porter Hypothesis," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    8. Fulei Shi & Haiqing Cao & Chuansheng Wang & Cuiyou Yao, 2020. "A System Dynamics Model for Ecological Environmental Management in Coal Mining Areas in China," IJERPH, MDPI, vol. 17(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    2. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    3. Li, Tianxiao & Liu, Pei & Li, Zheng, 2021. "Optimal scale of natural gas reserves in China under increasing and fluctuating demand: A quantitative analysis," Energy Policy, Elsevier, vol. 152(C).
    4. Xie, Nan & Yan, Zhijun & Zhou, Yi & Huang, Wenjun, 2017. "China's optimal stockpiling policies in the context of new oil price trend," Energy Policy, Elsevier, vol. 105(C), pages 332-340.
    5. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    6. Chen, X.P. & Hewitt, N. & Li, Z.T. & Wu, Q.M. & Yuan, Xufeng & Roskilly, Tony, 2017. "Dynamic programming for optimal operation of a biofuel micro CHP-HES system," Applied Energy, Elsevier, vol. 208(C), pages 132-141.
    7. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    8. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    9. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    10. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    11. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    12. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
    13. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    14. Bayer, Patrick & Marcoux, Christopher & Urpelainen, Johannes, 2013. "Leveraging private capital for climate mitigation: Evidence from the Clean Development Mechanism," Ecological Economics, Elsevier, vol. 96(C), pages 14-24.
    15. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    16. Seger, Pedro V.H. & Rigo-Mariani, Rémy & Thivel, Pierre-Xavier & Riu, Delphine, 2023. "A storage degradation model of Li-ion batteries to integrate ageing effects in the optimal management and design of an isolated microgrid," Applied Energy, Elsevier, vol. 333(C).
    17. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    18. Heeyun Lee & Hyunjoong Kim & Hyewon Kim & Hyunsup Kim, 2025. "Optimal Vehicle-to-Grid Charge Scheduling for Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 18(5), pages 1-15, February.
    19. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    20. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:273-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.