Time substitution for environmental performance: The case of Swedish manufacturing
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-016-1180-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Murty, Sushama & Russell, R. Robert, 2010.
"On modeling pollution-generating technologies,"
The Warwick Economics Research Paper Series (TWERPS)
931, University of Warwick, Department of Economics.
- Sushama Murty & R. Robert Russell & Steven B. Levkoff, 2011. "On modeling pollution-generating technologies," Discussion Papers 1101, University of Exeter, Department of Economics.
- Murty, Sushama & Russell, R. Robert, 2010. "On modeling pollution-generating technologies," Economic Research Papers 271176, University of Warwick - Department of Economics.
- William L. Weber & Bruce Domazlicky, 2001. "Productivity Growth and Pollution in State Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 195-199, February.
- Krüger, Jens & Hampf, Benjamin, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77007, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
- Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
- Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
- Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
- Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
- Léopold Simar & Paul W. Wilson, 1998.
"Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models,"
Management Science, INFORMS, vol. 44(1), pages 49-61, January.
- SIMAR, Léopold & WILSON, Paul, 1995. "Sensitivity Analysis to Efficiency Scores : How to Bootstrap in Nonparametric Frontier Models," LIDAM Discussion Papers CORE 1995043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Simar, L. & Wilson, P.W., 1998. "Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models," LIDAM Reprints CORE 1304, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
- Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
- Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
- Thomas Broberg & Per-Olov Marklund & Eva Samakovlis & Henrik Hammar, 2013. "Testing the Porter hypothesis: the effects of environmental investments on efficiency in Swedish industry," Journal of Productivity Analysis, Springer, vol. 40(1), pages 43-56, August.
- Rolf Färe & Shawna Grosskopf & Dimitri Margaritis & William Weber, 2012. "Technological change and timing reductions in greenhouse gas emissions," Journal of Productivity Analysis, Springer, vol. 37(3), pages 205-216, June.
- Leopold Simar & Valentin Zelenyuk, 2006.
"On Testing Equality of Distributions of Technical Efficiency Scores,"
Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
- Simar, Leopold & Zelenyuk, Valentin, 2004. "On testing equality of distributions of technical efficiency scores," MPRA Paper 28003, University Library of Munich, Germany.
- Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
- Kuosmanen, Timo & Bijsterbosch, Neil & Dellink, Rob, 2009. "Environmental cost-benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(6), pages 1633-1642, April.
- Benjamin Hampf & Jens J. Krüger, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 920-938.
- Fischer, Carolyn & Newell, Richard G., 2008.
"Environmental and technology policies for climate mitigation,"
Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
- Fischer, Carolyn & Newell, Richard, 2004. "Environmental and Technology Policies for Climate Mitigation," RFF Working Paper Series dp-04-05, Resources for the Future.
- Qi Li & Jeffrey Scott Racine, 2006. "Density Estimation, from Nonparametric Econometrics: Theory and Practice," Introductory Chapters, in: Nonparametric Econometrics: Theory and Practice, Princeton University Press.
- Brännlund, Runar & Lundgren, Tommy & Marklund, Per-Olov, 2014. "Carbon intensity in production and the effects of climate policy—Evidence from Swedish industry," Energy Policy, Elsevier, vol. 67(C), pages 844-857.
- Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
- Yu, Shiwei & Gao, Siwei & sun, Han, 2016. "A dynamic programming model for environmental investment decision-making in coal mining," Applied Energy, Elsevier, vol. 166(C), pages 273-281.
- Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
- Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
- Runar Brännlund & Tommy Lundgren, 2010. "Environmental policy and profitability: evidence from Swedish industry," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 12(1), pages 59-78, June.
- Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
- Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
- Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
- William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
- Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
- Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
- Ahmad, Shabbir & Steen, John & Ali, Saleem & Valenta, Rick, 2023. "Carbon-adjusted efficiency and technology gaps in gold mining," Resources Policy, Elsevier, vol. 81(C).
- Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren, 2022. "Prevention or cure? Optimal abatement mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 503-531, October.
- Rasmus Bøgh Holmen & Timo Kuosmanen & Jaan Masso & Per Botolf Maurseth & Kenneth Løvold Rødseth, 2024. "Optimal Intertemporal Broadband Investments To Promote Regional Economic Development," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 149, Faculty of Economics and Business Administration, University of Tartu (Estonia).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy & Weber, William L., 2016. "Time substitution for environmental performance: The case of Sweden manufacturing," CERE Working Papers 2016:3, CERE - the Center for Environmental and Resource Economics.
- Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
- Jens J. Krüger & Moritz Tarach, 2022. "Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 867-898, April.
- Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014.
"Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?,"
Applied Energy, Elsevier, vol. 132(C), pages 137-154.
- Roberto Gómez-Calvet & David Conesa & Ana Rosa Gómez-Calvet & Emili Tortosa-Ausina, 2013. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Working Papers 2013/17, Economics Department, Universitat Jaume I, Castellón (Spain).
- Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
- Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019.
"On selecting directions for directional distance functions in a non-parametric framework: a review,"
Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
- Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2017. "On selecting directions for directional distance functions in a non-parametric framework: A review," CEEP-BIT Working Papers 99, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Leleu, Hervé, 2013.
"Shadow pricing of undesirable outputs in nonparametric analysis,"
European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
- H. Leleu, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," Post-Print hal-00848044, HAL.
- Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
- Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
- Zuoren Sun & Rundong Luo & Dequn Zhou, 2015. "Optimal Path for Controlling Sectoral CO 2 Emissions Among China’s Regions: A Centralized DEA Approach," Sustainability, MDPI, vol. 8(1), pages 1-20, December.
- Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
- Gregory Casey, 2024.
"Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
- Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
- Casey, Gregory, 2017. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," MPRA Paper 76416, University Library of Munich, Germany.
- Gregory P. Casey, 2022. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," CESifo Working Paper Series 9580, CESifo.
- Gregory Casey, 2019. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," Department of Economics Working Papers 2019-17, Department of Economics, Williams College.
- Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
- Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
- Jayanath Ananda & Dong-hyun Oh, 2023. "Assessing environmentally sensitive productivity growth: incorporating externalities and heterogeneity into water sector evaluations," Journal of Productivity Analysis, Springer, vol. 59(1), pages 45-60, February.
- Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren, 2022. "Prevention or cure? Optimal abatement mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 503-531, October.
- Lundgren, Tommy & Marklund, Per-Olov & Samakovlis, Eva & Zhou, Wenchao, 2013. "Carbon Prices and Incentives for Technological Development," CERE Working Papers 2013:4, CERE - the Center for Environmental and Resource Economics.
- Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016.
"Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings,"
Omega, Elsevier, vol. 63(C), pages 48-59.
- Ke Wang & Yi-Ming Wei & Zhimin Huang, 2015. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," CEEP-BIT Working Papers 84, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
- Víctor Giménez & Claudio Thieme & Diego Prior & Emili Tortosa-Ausina, 2017. "An international comparison of educational systems: a temporal analysis in presence of bad outputs," Journal of Productivity Analysis, Springer, vol. 47(1), pages 83-101, February.
More about this item
Keywords
Time substitution; Dynamic efficiency; Environmental performance; Environmental investment; DEA; D24; Q50;All these keywords.
JEL classification:
- D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
- Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:54:y:2018:i:1:d:10.1007_s00181-016-1180-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.