IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1653-1661.html
   My bibliography  Save this article

Optimal energy control of a crushing process based on vertical shaft impactor

Author

Listed:
  • Numbi, B.P.
  • Xia, X.

Abstract

This paper presents an optimal control model to improve the operation energy efficiency of a vertical shaft impact (VSI) crushing process. The optimal control model takes the energy cost as the performance index to be minimized by accounting for the time-of-use tariff and process constraints such as storage capacity of the VSI crusher hopper, capacity of the main storage system, flow rate limits, cascade ratio setting, production requirement and product quality requirement. The control variables in the developed model are the belt conveyor feed rate, the material feed rate into the VSI crusher rotor, the bi-flow or cascade feed rate and the rotor tip speed of the crusher. These four control variables are optimally coordinated in order to improve the operation energy efficiency of the VSI crushing process. Simulation results based on a crushing process in a coal-fired power plant demonstrate a potential of a daily energy cost saving of about 49.7% and energy saving of about 15.3% in a high-demand season weekday.

Suggested Citation

  • Numbi, B.P. & Xia, X., 2016. "Optimal energy control of a crushing process based on vertical shaft impactor," Applied Energy, Elsevier, vol. 162(C), pages 1653-1661.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1653-1661
    DOI: 10.1016/j.apenergy.2014.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shirong & Xia, Xiaohua, 2011. "Modeling and energy efficiency optimization of belt conveyors," Applied Energy, Elsevier, vol. 88(9), pages 3061-3071.
    2. Pelzer, R. & Mathews, E.H. & le Roux, D.F. & Kleingeld, M., 2008. "A new approach to ensure successful implementation of sustainable demand side management (DSM) in South African mines," Energy, Elsevier, vol. 33(8), pages 1254-1263.
    3. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    4. Zhang, Shirong & Xia, Xiaohua, 2010. "Optimal control of operation efficiency of belt conveyor systems," Applied Energy, Elsevier, vol. 87(6), pages 1929-1937, June.
    5. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    6. Zhuan, Xiangtao & Xia, Xiaohua, 2013. "Optimal operation scheduling of a pumping station with multiple pumps," Applied Energy, Elsevier, vol. 104(C), pages 250-257.
    7. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    8. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    9. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    2. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    2. Numbi, B.P. & Xia, X., 2015. "Systems optimization model for energy management of a parallel HPGR crushing process," Applied Energy, Elsevier, vol. 149(C), pages 133-147.
    3. Muller, C.J. & Craig, I.K., 2016. "Energy reduction for a dual circuit cooling water system using advanced regulatory control," Applied Energy, Elsevier, vol. 171(C), pages 287-295.
    4. Wanjiru, Evan M. & Xia, Xiaohua, 2015. "Energy-water optimization model incorporating rooftop water harvesting for lawn irrigation," Applied Energy, Elsevier, vol. 160(C), pages 521-531.
    5. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    6. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    7. Chatterjee, Arnab & Zhang, Lijun & Xia, Xiaohua, 2015. "Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff," Applied Energy, Elsevier, vol. 146(C), pages 65-73.
    8. Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2016. "Model predictive control strategy of energy-water management in urban households," Applied Energy, Elsevier, vol. 179(C), pages 821-831.
    9. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    10. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    11. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    13. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    14. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    15. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    16. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    17. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    18. Witold Kawalec & Natalia Suchorab & Martyna Konieczna-Fuławka & Robert Król, 2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine," Energies, MDPI, vol. 13(19), pages 1-10, October.
    19. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    20. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1653-1661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.