IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp263-274.html
   My bibliography  Save this article

Profit-seeking energy-intensive enterprises participating in power system scheduling: Model and mechanism

Author

Listed:
  • Chen, Runze
  • Sun, Hongbin
  • Guo, Qinglai
  • Jin, Hongyang
  • Wu, Wenchuan
  • Zhang, Boming

Abstract

Energy-intensive enterprises (EIEs) are typical kinds of industrial loads. They consume large amounts of electricity, and are very sensitive to electricity prices. Moreover, they have very good schedulability: they own various adjustable devices and dispatchable self-owned generation units, and have great flexibility in making production decisions. The characteristics of EIEs make them potentially ideal for coordinating with power systems and gaining a win–win situation, especially when the renewable energy penetration rate is high. However, problems still remain as to how to organize this coordination. In this paper, we design a decomposed coordinative scheduling (DCS) approach in which independent EIEs and the system exchange information iteratively to achieve final settlements. Based on a general modeling of EIEs, we introduce a mathematical formulation for DCS. The corresponding algorithm is also provided. We compare DCS to other scheduling approaches in case studies. It shows that DCS can significantly improve the benefits of the two sides without harming the privacy of EIEs.

Suggested Citation

  • Chen, Runze & Sun, Hongbin & Guo, Qinglai & Jin, Hongyang & Wu, Wenchuan & Zhang, Boming, 2015. "Profit-seeking energy-intensive enterprises participating in power system scheduling: Model and mechanism," Applied Energy, Elsevier, vol. 158(C), pages 263-274.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:263-274
    DOI: 10.1016/j.apenergy.2015.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    2. Ghadimi, P. & Kara, S. & Kornfeld, B., 2014. "The optimal selection of on-site CHP systems through integrated sizing and operational strategy," Applied Energy, Elsevier, vol. 126(C), pages 38-46.
    3. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    4. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    5. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    6. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    7. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    2. Liao, Siyang & Xu, Jian & Sun, Yuanzhang & Bao, Yi, 2018. "Local utilization of wind electricity in isolated power systems by employing coordinated control scheme of industrial energy-intensive load," Applied Energy, Elsevier, vol. 217(C), pages 14-24.
    3. Liu, Jia & Cheng, Haozhong & Zeng, Pingliang & Yao, Liangzhong & Shang, Ce & Tian, Yuan, 2018. "Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration," Applied Energy, Elsevier, vol. 220(C), pages 800-813.
    4. Dandan Zhu & Wenying Liu & Yang Hu & Weizhou Wang, 2018. "A Practical Load-Source Coordinative Method for Further Reducing Curtailed Wind Power in China with Energy-Intensive Loads," Energies, MDPI, vol. 11(11), pages 1-14, October.
    5. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    2. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    3. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    4. Pechmann, Agnes & Shrouf, Fadi & Chonin, Max & Steenhusen, Nanke, 2017. "Load-shifting potential at SMEs manufacturing sites: A methodology and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 431-438.
    5. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    6. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    8. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    9. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    10. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    11. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    12. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    13. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    14. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    15. Sergei Kulakov & Florian Ziel, 2019. "Determining Fundamental Supply and Demand Curves in a Wholesale Electricity Market," Papers 1903.11383, arXiv.org, revised Nov 2019.
    16. Nataf, Kalen & Bradley, Thomas H., 2016. "An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities," Applied Energy, Elsevier, vol. 164(C), pages 133-139.
    17. Bejan, Ioana & Jensen, Carsten Lynge & Andersen, Laura M. & Hansen, Lars Gårn, 2021. "Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives," Applied Energy, Elsevier, vol. 284(C).
    18. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    19. Moreno, Blanca & García-Álvarez, María Teresa & Ramos, Carmen & Fernández-Vázquez, Esteban, 2014. "A General Maximum Entropy Econometric approach to model industrial electricity prices in Spain: A challenge for the competitiveness," Applied Energy, Elsevier, vol. 135(C), pages 815-824.
    20. Klaucke, Franziska & Hoffmann, Christian & Hofmann, Mathias & Tsatsaronis, George, 2020. "Impact of the chlorine value chain on the demand response potential of the chloralkali process," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:263-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.