IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp380-392.html
   My bibliography  Save this article

Stationary battery technologies in the U.S.: Development Trends and prospects

Author

Listed:
  • Telaretti, E.
  • Dusonchet, L.

Abstract

In the last years, stationary battery systems started to attract the attention of stakeholders thanks to their unique ability to decouple power generation and load over time, providing the ancillary services necessary for the stability and the reliability of the electrical system. This is especially true in the presence of high levels of penetration of renewable energy technologies, like wind and solar photovoltaic (PV), because of increased fluctuations in the electricity produced by these renewable sources. Despite the growing interest in energy storage technologies, the academic literature has not completely assessed the development trends of this sector. In order to fill this gap, this study strives to address the trends in the spread of stationary battery systems within the U.S. territory. First, the U.S. policy legislation within the different U.S. states is reviewed, with particular emphasis on support policies put in place in the different states. Second, based on the analysis of the Department of Energy (DOE) Energy Storage Database, the main trends in battery systems installations within the U.S. are identified and presented in this paper, with reference both to the viable use cases and to the main electrochemical technologies currently spread in the storage market. The analysis carried out in this work could help stakeholders to assess the impact of energy storage policies in the different U.S. states, identifying the future trends and the most promising markets within the U.S. territory.

Suggested Citation

  • Telaretti, E. & Dusonchet, L., 2017. "Stationary battery technologies in the U.S.: Development Trends and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 380-392.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:380-392
    DOI: 10.1016/j.rser.2016.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    2. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    3. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries," Energy Policy, Elsevier, vol. 38(8), pages 4011-4020, August.
    4. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    5. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    6. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    7. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries," Energy Policy, Elsevier, vol. 38(7), pages 3297-3308, July.
    8. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    9. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    10. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Sakti, Apurba & Botterud, Audun & O’Sullivan, Francis, 2018. "Review of wholesale markets and regulations for advanced energy storage services in the United States: Current status and path forward," Energy Policy, Elsevier, vol. 120(C), pages 569-579.
    3. Cho, Namhun & Yun, Sangwon & Jung, Jaesung, 2020. "Shunt fault analysis methodology for power distribution networks with inverter-based distributed energy resources of the Korea Electric Power Corporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Di Silvestre, M.L. & Riva Sanseverino, E. & Telaretti, E. & Zizzo, G., 2023. "Flexibility of grid interactive water heaters: The situation in the US," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    6. Cho, Namhun & Yun, Sangwon & Jung, Jaesung, 2019. "Determining the reverse fault current by the type of transformer and Distributed Generation in distribution system during the single-line to ground fault," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 102-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    2. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    3. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    4. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    5. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    6. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    7. De Groote, Olivier & Gautier, Axel & Verboven, Frank, 2024. "The political economy of financing climate policy — Evidence from the solar PV subsidy programs," Resource and Energy Economics, Elsevier, vol. 77(C).
    8. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    9. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    10. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.
    11. Ramírez, F. Javier & Honrubia-Escribano, A. & Gómez-Lázaro, E. & Pham, Duc T., 2017. "Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries," Energy Policy, Elsevier, vol. 102(C), pages 440-452.
    12. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    13. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    14. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    15. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2018. "Assessment of energy policies to promote photovoltaic generation in the European Union," Energy, Elsevier, vol. 151(C), pages 864-874.
    16. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    17. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.
    18. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    19. Antans Sauhats & Laila Zemite & Lubov Petrichenko & Igor Moshkin & Aivo Jasevics, 2018. "Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices," Energies, MDPI, vol. 11(11), pages 1-19, November.
    20. Mauricio B. C. Salles & Junling Huang & Michael J. Aziz & William W. Hogan, 2017. "Potential Arbitrage Revenue of Energy Storage Systems in PJM," Energies, MDPI, vol. 10(8), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:380-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.