IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp803-821.html
   My bibliography  Save this article

An open-source model for optimal design and operation of industrial energy systems

Author

Listed:
  • Atabay, Dennis

Abstract

This paper presents a detailed mixed-integer linear optimization model for capacity-expansion planning and unit commitment of a factory's distributed energy supply system. The model identifies the cost-optimal configurations of specified energy-conversion processes and storage techniques to cover the factory's energy demand. The general formulation of the model allows it to deal with a large number of energy-system structures. The main constraint of the model is that it must cover given demand time series for different commodities such as electricity, heating and cooling. For each commodity, storage units with different technical and economic parameters as well as a possible external connection considering time-sensitive prices for import/export and peak demand charges can be defined. The model allows the users to specify processes, for converting between the different types of commodities. The conversion processes can handle multiple inputs and outputs and consider part-load performance as well as start-up behavior. The objective of the model is to find the optimal design and operation of the industrial energy system with minimal investment and operational costs. A case study based on the measured electric- and heat-demand time series of four different factories is presented, investigating the economic efficiency of combined heat and power (CHP) units and battery storage systems. The results show, that the decision as to whether CHP units are used, mainly depends on the relationship between gas and electricity costs, while the load profile of the factories and the applied pricing program only influence their size. Batteries are only considered in the results when their investment costs are reduced and they have little influence on the total cost.

Suggested Citation

  • Atabay, Dennis, 2017. "An open-source model for optimal design and operation of industrial energy systems," Energy, Elsevier, vol. 121(C), pages 803-821.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:803-821
    DOI: 10.1016/j.energy.2017.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    2. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    3. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    4. Karlsson, Magnus, 2011. "The MIND method: A decision support for optimization of industrial energy systems - Principles and case studies," Applied Energy, Elsevier, vol. 88(3), pages 577-589, March.
    5. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    6. Zidan, Aboelsood & Gabbar, Hossam A. & Eldessouky, Ahmed, 2015. "Optimal planning of combined heat and power systems within microgrids," Energy, Elsevier, vol. 93(P1), pages 235-244.
    7. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    8. Thollander, Patrik & Mardan, Nawzad & Karlsson, Magnus, 2009. "Optimization as investment decision support in a Swedish medium-sized iron foundry - A move beyond traditional energy auditing," Applied Energy, Elsevier, vol. 86(4), pages 433-440, April.
    9. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    10. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    11. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns," Applied Energy, Elsevier, vol. 136(C), pages 1110-1131.
    12. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    13. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    14. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    15. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    16. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Zade & Zhengjie You & Babu Kumaran Nalini & Peter Tzscheutschler & Ulrich Wagner, 2020. "Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Zinsmeister, Daniel & Tzscheutschler, Peter & Perić, Vedran S. & Goebel, Christoph, 2023. "Stratified thermal energy storage model with constant layer volume for predictive control — Formulation, comparison, and empirical validation," Renewable Energy, Elsevier, vol. 219(P2).
    3. Luis Montero & Antonio Bello & Javier Reneses, 2020. "A New Methodology to Obtain a Feasible Thermal Operation in Power Systems in a Medium-Term Horizon," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Iliev, I.K. & Terziev, A.K. & Beloev, H.I. & Nikolaev, I. & Georgiev, A.G., 2021. "Comparative analysis of the energy efficiency of different types co-generators at large scales CHPs," Energy, Elsevier, vol. 221(C).
    5. Cantu Rodriguez, Roman & Palacios-Garcia, Emilio J. & Deconinck, Geert, 2024. "Redesign for flexibility through electrification: Multi-objective optimization of the operation of a multi-energy industrial steam network," Applied Energy, Elsevier, vol. 362(C).
    6. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    7. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2024. "Fifth-generation district heating and cooling: Opportunities and implementation challenges in a mild climate," Energy, Elsevier, vol. 286(C).
    8. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
    9. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    11. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    12. Ceusters, Glenn & Rodríguez, Román Cantú & García, Alberte Bouso & Franke, Rüdiger & Deconinck, Geert & Helsen, Lieve & Nowé, Ann & Messagie, Maarten & Camargo, Luis Ramirez, 2021. "Model-predictive control and reinforcement learning in multi-energy system case studies," Applied Energy, Elsevier, vol. 303(C).
    13. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    14. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Qichen Wang & Zhengmeng Hou & Yilin Guo & Liangchao Huang & Yanli Fang & Wei Sun & Yuhan Ge, 2023. "Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models," Energies, MDPI, vol. 16(13), pages 1-31, July.
    16. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    18. Thomas Zipperle & Clara Luisa Orthofer, 2019. "d2ix : A Model Input-Data Management and Analysis Tool for MESSAGE ix," Energies, MDPI, vol. 12(8), pages 1-12, April.
    19. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    2. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    3. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    4. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    5. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    7. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    10. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    11. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    12. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    13. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    14. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    17. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    18. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    19. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    20. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:803-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.