IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp108-114.html
   My bibliography  Save this article

Design of an optimal process for enhanced production of bioethanol and biodiesel from algae oil via glycerol fermentation

Author

Listed:
  • Martín, Mariano
  • Grossmann, Ignacio E.

Abstract

In this paper, we optimize a process that integrates the use of glycerol to produce ethanol via fermentation within the simultaneous production of biodiesel and bioethanol from algae. The process consists of growing the algae, determining the optimal fraction of oil vs. starch, followed by oil extraction, starch liquefaction and saccharification, to sugars, oil transesterification, for which we consider two transesterification technologies (enzymes and alkali) and the fermentation of sugars and glycerol. The advantage of this process is that the dehydration technologies are common for the products of the glucose and glycerol fermentation. Simultaneous optimization and heat integration is performed using Duran and Grossmann’s model. The fermentation of glycerol to ethanol increases the production of bioethanol by at least 50%. The energy and water consumptions are competitive with other processes that either sell the glycerol or use it to obtain methanol. However, the price for the biofuels is only competitive if glycerol cannot be sold to the market.

Suggested Citation

  • Martín, Mariano & Grossmann, Ignacio E., 2014. "Design of an optimal process for enhanced production of bioethanol and biodiesel from algae oil via glycerol fermentation," Applied Energy, Elsevier, vol. 135(C), pages 108-114.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:108-114
    DOI: 10.1016/j.apenergy.2014.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    2. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    3. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
    2. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    3. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    4. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    5. Martín, Mariano, 2016. "RePSIM metric for design of sustainable renewable based fuel and power production processes," Energy, Elsevier, vol. 114(C), pages 833-845.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    2. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    4. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    5. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    6. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    7. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    8. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    10. Ruth Chinyere Anyanwu & Cristina Rodriguez & Andy Durrant & Abdul Ghani Olabi, 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    11. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    12. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    15. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    16. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    17. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    18. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    19. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    20. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:108-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.