Theoretical limits of thermoelectric power generation from exhaust gases
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2014.07.075
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
- Sahin, A.Z. & Yilbas, B.S. & Shuja, S.Z. & Momin, O., 2011. "Investigation into topping cycle: Thermal efficiency with and without presence of thermoelectric generator," Energy, Elsevier, vol. 36(7), pages 4048-4054.
- Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
- Yazawa, Kazuaki & Koh, Yee Rui & Shakouri, Ali, 2013. "Optimization of thermoelectric topping combined steam turbine cycles for energy economy," Applied Energy, Elsevier, vol. 109(C), pages 1-9.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
- Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Fernández-Yáñez, P. & Armas, O. & Kiwan, R. & Stefanopoulou, A.G. & Boehman, A.L., 2018. "A thermoelectric generator in exhaust systems of spark-ignition and compression-ignition engines. A comparison with an electric turbo-generator," Applied Energy, Elsevier, vol. 229(C), pages 80-87.
- Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Cheng, Chin-Hsiang, 2016. "Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section," Applied Energy, Elsevier, vol. 164(C), pages 501-508.
- Xie, Yu & Wu, Shi-jun & Yang, Can-jun, 2016. "Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter," Applied Energy, Elsevier, vol. 164(C), pages 620-627.
- Zhi Li & Wenhao Li & Zhen Chen, 2017. "Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant," Energies, MDPI, vol. 10(10), pages 1-15, September.
- Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
- Delfani, Fatemeh & Rahbar, Nader & Aghanajafi, Cyrus & Heydari, Ali & KhalesiDoost, Abdollah, 2021. "Utilization of thermoelectric technology in converting waste heat into electrical power required by an impressed current cathodic protection system," Applied Energy, Elsevier, vol. 302(C).
- Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).
- Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
- Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
- He, Wei & Wang, Shixue & Yue, Like, 2017. "High net power output analysis with changes in exhaust temperature in a thermoelectric generator system," Applied Energy, Elsevier, vol. 196(C), pages 259-267.
- Iezzi, Brian & Ankireddy, Krishnamraju & Twiddy, Jack & Losego, Mark D. & Jur, Jesse S., 2017. "Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors," Applied Energy, Elsevier, vol. 208(C), pages 758-765.
- He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
- Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
- Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
- Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
- Ivan Ruiz Cózar & Toni Pujol & Eduard Massaguer & Albert Massaguer & Lino Montoro & Jose Ramon González & Martí Comamala & Samir Ezzitouni, 2021. "Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators," Energies, MDPI, vol. 14(8), pages 1-16, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
- Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
- Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
- Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
- Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
- Kwan, Trevor Hocksun & Wu, Xiaofeng, 2016. "Power and mass optimization of the hybrid solar panel and thermoelectric generators," Applied Energy, Elsevier, vol. 165(C), pages 297-307.
- Massaguer, Eduard & Massaguer, Albert & Pujol, Toni & Gonzalez, Jose Ramon & Montoro, Lino, 2017. "Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect," Energy, Elsevier, vol. 129(C), pages 59-69.
- Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Lu, Chi, 2017. "Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators," Applied Energy, Elsevier, vol. 207(C), pages 634-642.
- Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
- Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
- Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
- Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
- Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
- Ricardo Marroquín-Arreola & Jinmi Lezama & Héctor Ricardo Hernández-De León & Julio César Martínez-Romo & José Antonio Hoyo-Montaño & Jorge Luis Camas-Anzueto & Elías Neftalí Escobar-Gómez & Jorge Eva, 2022. "Design of an MPPT Technique for the Indirect Measurement of the Open-Circuit Voltage Applied to Thermoelectric Generators," Energies, MDPI, vol. 15(10), pages 1-20, May.
- Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
- Massaguer Colomer, Albert & Massaguer, Eduard & Pujol, Toni & Comamala, Martí & Montoro, Lino & González, J.R., 2015. "Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control," Applied Energy, Elsevier, vol. 154(C), pages 709-717.
- Zhang, T., 2016. "New thinking on modeling of thermoelectric devices," Applied Energy, Elsevier, vol. 168(C), pages 65-74.
- Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
- Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
- Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
More about this item
Keywords
Waste heat recovery; Thermoelectric; Variational method; TEG; Power generation; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:80-88. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.