IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp112-122.html
   My bibliography  Save this article

Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer

Author

Listed:
  • Noshadi, Iman
  • Kanjilal, Baishali
  • Du, Shouchang
  • Bollas, George M.
  • Suib, Steven L.
  • Provatas, Anthony
  • Liu, Fujian
  • Parnas, Richard S.

Abstract

Brown grease is a common waste product responsible for many sewer overflows and illnesses, and it contains useful free fatty acids and other hydrocarbon-like molecules. This work demonstrates the potential to transform nearly 100% of the brown grease into biodiesel, synthesis gas and bio-oil for use as biofuel or for power generation. A solid acid catalyst was synthesized with excellent activity for esterification of the free fatty acids and relatively high activity for transesterification of triglycerides, which make up the oil phase of the brown grease. The catalyst is synthesized using a tri-block copolymer template that leads to mesopores with diameters narrowly centered at 11.1nm. Residual solids, which make up roughly 10% of the brown grease, were found by elemental analysis to be a hydrogen rich feedstock, with H/Ceff ratio greater than wood or sugar. Preliminary gasification and pyrolysis experiments illustrate nearly 100% conversion of the residual solids. Fast pyrolysis in a drop tube furnace at 600°C produced oil consisting predominantly of long chain hydrocarbons.

Suggested Citation

  • Noshadi, Iman & Kanjilal, Baishali & Du, Shouchang & Bollas, George M. & Suib, Steven L. & Provatas, Anthony & Liu, Fujian & Parnas, Richard S., 2014. "Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer," Applied Energy, Elsevier, vol. 129(C), pages 112-122.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:112-122
    DOI: 10.1016/j.apenergy.2014.04.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400453X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark E. Davis, 2002. "Ordered porous materials for emerging applications," Nature, Nature, vol. 417(6891), pages 813-821, June.
    2. Vladimir K. Dioumaev & R. Morris Bullock, 2003. "A recyclable catalyst that precipitates at the end of the reaction," Nature, Nature, vol. 424(6948), pages 530-532, July.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    6. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    7. Cheng, Gong & He, Pi-wen & Xiao, Bo & Hu, Zhi-quan & Liu, Shi-ming & Zhang, Le-guan & Cai, Lei, 2012. "Gasification of biomass micron fuel with oxygen-enriched air: Thermogravimetric analysis and gasification in a cyclone furnace," Energy, Elsevier, vol. 43(1), pages 329-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laskar, Ikbal Bahar & Changmai, Bishwajit & Gupta, Rajat & Shi, Da & Jenkinson, Kellie J. & Wheatley, Andrew E.H. & Rokhum, Lalthazuala, 2021. "A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 173(C), pages 415-421.
    2. Silva, Sónia M. & Peixoto, Andreia F. & Freire, Cristina, 2020. "Organosulfonic acid functionalized montmorillonites as solid catalysts for (trans) esterification of free fatty acids and (waste) oils," Renewable Energy, Elsevier, vol. 146(C), pages 2416-2429.
    3. Gong, Shu-wen & Lu, Jing & Wang, Hong-hong & Liu, Li-jun & Zhang, Qian, 2014. "Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid," Applied Energy, Elsevier, vol. 134(C), pages 283-289.
    4. Panchal, Balaji & Zhu, Zheng & Qin, Shenjun & Chang, Tao & Zhao, Qiaojing & Sun, Yuzhuang & Zhao, Cunliang & Wang, Jinxi & Bian, Kai & Rankhamb, Santosh, 2022. "The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review," Renewable Energy, Elsevier, vol. 181(C), pages 341-354.
    5. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    6. Troter, Dragan Z. & Todorović, Zoran B. & Đokić-Stojanović, Dušica R. & Stamenković, Olivera S. & Veljković, Vlada B., 2016. "Application of ionic liquids and deep eutectic solvents in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 473-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    2. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    3. Gong, Shu-wen & Lu, Jing & Wang, Hong-hong & Liu, Li-jun & Zhang, Qian, 2014. "Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid," Applied Energy, Elsevier, vol. 134(C), pages 283-289.
    4. Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
    5. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    6. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    7. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    8. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    9. Zhang, Yue & Wong, Wing-Tak & Yung, Ka-Fu, 2014. "Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia," Applied Energy, Elsevier, vol. 116(C), pages 191-198.
    10. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    11. Kwon, Eilhann E. & Jeon, Eui-Chan & Yi, Haakrho & Kim, Sungpyo, 2014. "Transforming duck tallow into biodiesel via noncatalytic transesterification," Applied Energy, Elsevier, vol. 116(C), pages 20-25.
    12. Fereidooni, Leila & Tahvildari, Kambiz & Mehrpooya, Mehdi, 2018. "Trans-esterification of waste cooking oil with methanol by electrolysis process using KOH," Renewable Energy, Elsevier, vol. 116(PA), pages 183-193.
    13. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
    14. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    15. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Tran, Dang-Thuan & Chen, Ching-Lung & Chang, Jo-Shu, 2016. "Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor," Applied Energy, Elsevier, vol. 168(C), pages 340-350.
    17. Katre, Gouri & Raskar, Shubham & Zinjarde, Smita & Ravi Kumar, V. & Kulkarni, B.D. & RaviKumar, Ameeta, 2018. "Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil," Energy, Elsevier, vol. 142(C), pages 944-952.
    18. Cao, Leichang & Wang, Jieni & Liu, Cheng & Chen, Yanwei & Liu, Kuojin & Han, Sheng, 2014. "Ethylene vinyl acetate copolymer: A bio-based cold flow improver for waste cooking oil derived biodiesel blends," Applied Energy, Elsevier, vol. 132(C), pages 163-167.
    19. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    20. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:112-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.