IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp333-339.html
   My bibliography  Save this article

Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst

Author

Listed:
  • Fan, Mingming
  • Huang, Jianglei
  • Yang, Jing
  • Zhang, Pingbo

Abstract

The catalytic synthesis of biodiesel from soybean oil by transesterification over basic ionic liquid catalysts had been studied at atmospheric pressure. Choline hydroxide (ChOH) catalyst exhibited better catalytic activity compared with other basic ionic liquid catalysts, and methanol is the best alcohol for biodiesel synthesis. The suitable molar ratio of methanol and soybean oil was 9:1, and the optimum catalyst dosage existed for catalytic activity, which was about 4wt.% (without soap formation). The study also revealed that the appropriate reaction temperature was about 60°C, and the suitable reaction time was 2.5h on the basis of biodiesel yield. The reusability test showed that ChOH catalyst had perfect utility for repeated use. By basicity test, it was found that the basic ionic liquid ChOH possessed better basicity in methanol solution. The catalytic reaction mechanism was illuminated by the interaction between the methoxyl group after activating and the carbonyl group of the triglyceride, which has been investigated using quasi in situ infrared spectroscopy.

Suggested Citation

  • Fan, Mingming & Huang, Jianglei & Yang, Jing & Zhang, Pingbo, 2013. "Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst," Applied Energy, Elsevier, vol. 108(C), pages 333-339.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:333-339
    DOI: 10.1016/j.apenergy.2013.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Shengyang & Guan, Yanping & Wang, Yun & Han, Heyou, 2011. "Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production," Applied Energy, Elsevier, vol. 88(8), pages 2685-2690, August.
    2. Deng, Xin & Fang, Zhen & Liu, Yun-hu & Yu, Chang-Liu, 2011. "Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst," Energy, Elsevier, vol. 36(2), pages 777-784.
    3. Wen, Zhenzhong & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2010. "Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts," Applied Energy, Elsevier, vol. 87(3), pages 743-748, March.
    4. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    5. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    6. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    7. Tang, Ying & Meng, Mei & Zhang, Jie & Lu, Yong, 2011. "Efficient preparation of biodiesel from rapeseed oil over modified CaO," Applied Energy, Elsevier, vol. 88(8), pages 2735-2739, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Min & Liu, Helei & Gao, Hongxia & Olson, Wilfred & Liang, Zhiwu, 2019. "CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine," Applied Energy, Elsevier, vol. 235(C), pages 311-319.
    2. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    3. Gholami, Ali & Pourfayaz, Fathollah & Hajinezhad, Ahmad & Mohadesi, Majid, 2019. "Biodiesel production from Norouzak (Salvia leriifolia) oil using choline hydroxide catalyst in a microchannel reactor," Renewable Energy, Elsevier, vol. 136(C), pages 993-1001.
    4. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    5. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    6. Ibrahim, Muna Hassan & Hayyan, Maan & Hashim, Mohd Ali & Hayyan, Adeeb, 2017. "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1534-1549.
    7. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    8. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.
    9. Zhang, Pingbo & Liu, Yanlei & Fan, Mingming & Jiang, Pingping, 2016. "Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity," Renewable Energy, Elsevier, vol. 86(C), pages 99-105.
    10. Phromphithak, Sanphawat & Meepowpan, Puttinan & Shimpalee, Sirivatch & Tippayawong, Nakorn, 2020. "Transesterification of palm oil into biodiesel using ChOH ionic liquid in a microwave heated continuous flow reactor," Renewable Energy, Elsevier, vol. 154(C), pages 925-936.
    11. Qian, Kun & Shen, Xiang & Wang, Yanxin & Gao, Qiang & Ding, Hongwei, 2015. "In-situ transesterification of Jatropha oil over an efficient solid alkali using low leaching component supported on industrial silica gel," Energy, Elsevier, vol. 93(P2), pages 2251-2257.
    12. Troter, Dragan Z. & Todorović, Zoran B. & Đokić-Stojanović, Dušica R. & Stamenković, Olivera S. & Veljković, Vlada B., 2016. "Application of ionic liquids and deep eutectic solvents in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 473-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    3. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    4. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    5. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    6. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    7. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    8. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    9. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    12. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    13. André Cremonez, Paulo & Feroldi, Michael & Cézar Nadaleti, Willian & de Rossi, Eduardo & Feiden, Armin & de Camargo, Mariele Pasuch & Cremonez, Filipe Eliazar & Klajn, Felipe Fernandes, 2015. "Biodiesel production in Brazil: Current scenario and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 415-428.
    14. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat Teong & Khayoon, Muataz Sh., 2012. "Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4574-4587.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    16. Yang, Cheng-Yuan & Fang, Zhen & Li, Bo & Long, Yun-feng, 2012. "Review and prospects of Jatropha biodiesel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2178-2190.
    17. Su, Chia-Hung, 2013. "Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production," Applied Energy, Elsevier, vol. 104(C), pages 503-509.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    19. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    20. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:333-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.