IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v477y2024ics009630032400256x.html
   My bibliography  Save this article

Medical image reconstruction with multi-level deep learning denoiser and tight frame regularization

Author

Listed:
  • Wu, Tingting
  • Huang, Chaoyan
  • Jia, Shilong
  • Li, Wei
  • Chan, Raymond
  • Zeng, Tieyong
  • Kevin Zhou, S.

Abstract

As a fundamental task, medical image reconstruction has attracted growing attention in clinical diagnosis. Aiming at promising performance, it is critical to deeply understand and effectively design advanced model for image reconstruction. Indeed, one possible solution is to integrate the deep learning methods with the variational approaches to absorb benefits from both parts. In this paper, to protect more details and a better balance between the computational burden and the numerical performance, we carefully choose the multi-level wavelet convolutional neural network (MWCNN) for this issue. As the tight frame regularizer has the capability of maintaining edge information in image, we combine the MWCNN with the tight frame regularizer to reconstruct images. The proposed model can be solved by the celebrated proximal alternating minimization (PAM) algorithm. Furthermore, our method is a noise-adaptive framework as it can also handle real-world images. To prove the robustness of our strategy, we address two important medical image reconstruction tasks: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Extensive numerical experiments show clearly that our approach achieves better performance over several state-of-the-art methods.

Suggested Citation

  • Wu, Tingting & Huang, Chaoyan & Jia, Shilong & Li, Wei & Chan, Raymond & Zeng, Tieyong & Kevin Zhou, S., 2024. "Medical image reconstruction with multi-level deep learning denoiser and tight frame regularization," Applied Mathematics and Computation, Elsevier, vol. 477(C).
  • Handle: RePEc:eee:apmaco:v:477:y:2024:i:c:s009630032400256x
    DOI: 10.1016/j.amc.2024.128795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032400256X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    3. Wu, Tingting & Ng, Michael K. & Zhao, Xi-Le, 2021. "Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Guo, Lin & Zhao, Xi-Le & Gu, Xian-Ming & Zhao, Yong-Liang & Zheng, Yu-Bang & Huang, Ting-Zhu, 2021. "Three-dimensional fractional total variation regularized tensor optimized model for image deblurring," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    6. Wen, You-Wei & Zhao, Mingchao & Ng, Michael, 2022. "Cartoon and texture decomposition for color image in opponent color space," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    7. Shi, Baoli & Gu, Fang & Pang, Zhi-Feng & Zeng, Yuhua, 2022. "Remove the salt and pepper noise based on the high order total variation and the nuclear norm regularization," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jingjing & Ma, Ruijie & Zeng, Xiaoyang & Liu, Wanquan & Wang, Mingyu & Chen, Hui, 2021. "An efficient non-convex total variation approach for image deblurring and denoising," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    2. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    3. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    4. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    5. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    6. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    7. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    8. Zhili Ge & Zhongming Wu & Xin Zhang & Qin Ni, 2023. "An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 821-844, August.
    9. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    10. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    11. Dominikus Noll, 2014. "Convergence of Non-smooth Descent Methods Using the Kurdyka–Łojasiewicz Inequality," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 553-572, February.
    12. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    13. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    14. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    15. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    16. Peichao Duan & Xubang Zheng & Jing Zhao, 2018. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    17. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    18. Guoyin Li & Tianxiang Liu & Ting Kei Pong, 2017. "Peaceman–Rachford splitting for a class of nonconvex optimization problems," Computational Optimization and Applications, Springer, vol. 68(2), pages 407-436, November.
    19. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    20. Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:477:y:2024:i:c:s009630032400256x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.