IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v392y2021ics009630032030655x.html
   My bibliography  Save this article

Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements

Author

Listed:
  • Fornasier, Massimo
  • Maly, Johannes
  • Naumova, Valeriya

Abstract

We consider the problem of recovering an unknown effectively (s1, s2)-sparse low-rank-R matrix X with possibly non-orthogonal rank-1 decomposition from incomplete and inaccurate linear measurements of the form y=A(X)+η, where η is an ineliminable noise11With “ineliminable” we mean that the focus of the paper is not on recovery from exact y=A(X) measurements, rather on the stable recovery under severe measurement noise.. We first derive an optimization formulation for matrix recovery under the considered model and propose a novel algorithm, called Alternating Tikhonov regularization and Lasso (A-T-LAS2,1), to solve it. The algorithm is based on a multi-penalty regularization, which is able to leverage both structures (low-rankness and sparsity) simultaneously. The algorithm is a fast first order method, and straightforward to implement. We prove global convergence for any linear measurement model to stationary points and local convergence to global minimizers. By adapting the concept of restricted isometry property from compressed sensing to our novel model class, we prove error bounds between global minimizers and ground truth, up to noise level, from a number of subgaussian measurements scaling as R(s1+s2), up to log-factors in the dimension, and relative-to-diameter distortion. Simulation results demonstrate both the accuracy and efficacy of the algorithm, as well as its superiority to the state-of-the-art algorithms in strong noise regimes and for matrices whose singular vectors do not possess exact (joint-) sparse support.

Suggested Citation

  • Fornasier, Massimo & Maly, Johannes & Naumova, Valeriya, 2021. "Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements," Applied Mathematics and Computation, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s009630032030655x
    DOI: 10.1016/j.amc.2020.125702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030655X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    2. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    3. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    4. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    6. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    7. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    8. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    9. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    10. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    11. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    12. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    13. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    14. Esposito, Federico, 2022. "Demand risk and diversification through international trade," Journal of International Economics, Elsevier, vol. 135(C).
    15. Peng W. He & Andrew Grant & Joel Fabre, 2013. "Economic value of analyst recommendations in Australia: an application of the Black–Litterman asset allocation model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 441-470, June.
    16. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    17. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    18. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    19. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    20. Karstanje, Dennis & Sojli, Elvira & Tham, Wing Wah & van der Wel, Michel, 2013. "Economic valuation of liquidity timing," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5073-5087.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s009630032030655x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.