IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v397y2021ics0096300321000254.html
   My bibliography  Save this article

An efficient non-convex total variation approach for image deblurring and denoising

Author

Listed:
  • Liu, Jingjing
  • Ma, Ruijie
  • Zeng, Xiaoyang
  • Liu, Wanquan
  • Wang, Mingyu
  • Chen, Hui

Abstract

Total variation (TV) is broadly utilized in image processing because it is able to preserve sharp edges and object boundaries, which are usually the most important parts of an image. Recently, the non-convex functions such as the smoothly clipped absolute deviation, the minimax concave penalty, the capped ℓ1-norm penalty and the ℓp quasi-norm with 0

Suggested Citation

  • Liu, Jingjing & Ma, Ruijie & Zeng, Xiaoyang & Liu, Wanquan & Wang, Mingyu & Chen, Hui, 2021. "An efficient non-convex total variation approach for image deblurring and denoising," Applied Mathematics and Computation, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:apmaco:v:397:y:2021:i:c:s0096300321000254
    DOI: 10.1016/j.amc.2021.125977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Ding, Meng & Huang, Ting-Zhu & Wang, Si & Mei, Jin-Jin & Zhao, Xi-Le, 2019. "Total variation with overlapping group sparsity for deblurring images under Cauchy noise," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 128-147.
    4. Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    5. Xiu, Xianchao & Liu, Wanquan & Li, Ling & Kong, Lingchen, 2019. "Alternating direction method of multipliers for nonconvex fused regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 59-71.
    6. Xianchao Xiu & Lingchen Kong & Yan Li & Houduo Qi, 2018. "Iterative reweighted methods for $$\ell _1-\ell _p$$ ℓ 1 - ℓ p minimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 201-219, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sining Huang & Yupeng Chen & Tiantian Qiao, 2021. "An Extended Reweighted ℓ 1 Minimization Algorithm for Image Restoration," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    2. Wang, Jian & Han, Ziwei & Jiang, Wenjing & Kim, Junseok, 2023. "A fast, efficient, and explicit phase-field model for 3D mesh denoising," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiu, Xianchao & Liu, Wanquan & Li, Ling & Kong, Lingchen, 2019. "Alternating direction method of multipliers for nonconvex fused regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 59-71.
    2. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    3. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    4. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    5. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    6. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    7. Yitian Qian & Shaohua Pan & Yulan Liu, 2023. "Calmness of partial perturbation to composite rank constraint systems and its applications," Journal of Global Optimization, Springer, vol. 85(4), pages 867-889, April.
    8. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2019. "A refined convergence analysis of $$\hbox {pDCA}_{e}$$ pDCA e with applications to simultaneous sparse recovery and outlier detection," Computational Optimization and Applications, Springer, vol. 73(1), pages 69-100, May.
    9. Guoyin Li & Tianxiang Liu & Ting Kei Pong, 2017. "Peaceman–Rachford splitting for a class of nonconvex optimization problems," Computational Optimization and Applications, Springer, vol. 68(2), pages 407-436, November.
    10. Peiran Yu & Ting Kei Pong, 2019. "Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation," Computational Optimization and Applications, Springer, vol. 73(2), pages 353-386, June.
    11. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    12. Yue Xie & Uday V. Shanbhag, 2021. "Tractable ADMM schemes for computing KKT points and local minimizers for $$\ell _0$$ ℓ 0 -minimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 43-85, January.
    13. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    14. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    15. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    16. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    17. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    18. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    19. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    20. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:397:y:2021:i:c:s0096300321000254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.