IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v470y2024ics0096300324000420.html
   My bibliography  Save this article

Construction and mean-square stability analysis of a new family of stochastic Runge-Kutta methods

Author

Listed:
  • Rahimi, Vaz'he
  • Ahmadian, Davood
  • Ballestra, Luca Vincenzo

Abstract

This research paper investigates the convergence and stability of two diagonal drift-implicit second-order stochastic Runge-Kutta methods for weak approximation of systems containing three-dimensional drift and noise terms in Itô stochastic differential equations. The first method is based on the approach presented by Debrabant and Rößler (2008) [5], while the second method utilizes a Butcher table that, to the best of our knowledge, has not been used in previous research. We compare the convergence and stability of both methods and analyze their respective stability regions. The results show that the method using the newly introduced Butcher table is not only reliable but also highly efficient.

Suggested Citation

  • Rahimi, Vaz'he & Ahmadian, Davood & Ballestra, Luca Vincenzo, 2024. "Construction and mean-square stability analysis of a new family of stochastic Runge-Kutta methods," Applied Mathematics and Computation, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000420
    DOI: 10.1016/j.amc.2024.128570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324000420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haghighi, A. & Hosseini, S.M., 2014. "Analysis of asymptotic mean-square stability of a class of Runge–Kutta schemes for linear systems of stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 17-48.
    2. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    2. Liu, Yufen & Cao, Wanrong & Li, Yuelin, 2022. "Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    3. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    4. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    5. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    6. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    7. Đorđević, Jasmina & Milošević, Marija & Šuvak, Nenad, 2023. "Non-linear stochastic model for dopamine cycle," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    9. Kang, Ting & Li, Qiang & Zhang, Qimin, 2019. "Numerical analysis of the balanced implicit method for stochastic age-dependent capital system with poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 166-177.
    10. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    11. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    13. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    14. Nicola Bruti-Liberati & Eckhard Platen, 2008. "Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations," Research Paper Series 222, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Yansheng Ma & Yong Li, 2012. "A uniform asymptotic expansion for stochastic volatility model in pricing multi‐asset European options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(4), pages 324-341, July.
    16. Komori Yoshio, 1995. "Stahle ROW-Type Weak Scheme for Stochastic Differential Equations," Monte Carlo Methods and Applications, De Gruyter, vol. 1(4), pages 279-300, December.
    17. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    18. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    19. Robert Elliott & Eckhard Platen, 1999. "Hidden Markov Chain Filtering for Generalised Bessel Processes," Research Paper Series 23, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.