IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v1y1995i4p279-300n3.html
   My bibliography  Save this article

Stahle ROW-Type Weak Scheme for Stochastic Differential Equations

Author

Listed:
  • Komori Yoshio

Abstract

No abstract is available for this item.

Suggested Citation

  • Komori Yoshio, 1995. "Stahle ROW-Type Weak Scheme for Stochastic Differential Equations," Monte Carlo Methods and Applications, De Gruyter, vol. 1(4), pages 279-300, December.
  • Handle: RePEc:bpj:mcmeap:v:1:y:1995:i:4:p:279-300:n:3
    DOI: 10.1515/mcma.1995.1.4.279
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.1995.1.4.279
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.1995.1.4.279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Hofmann & Eckhard Platen, 1994. "Stability of weak numerical schemes for stochastic differential equations," Published Paper Series 1994-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckhard Platen & Lei Shi, 2008. "On the Numerical Stability of Simulation Methods for SDES," Research Paper Series 234, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Nicola Bruti-Liberati & Eckhard Platen, 2008. "Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations," Research Paper Series 222, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    5. Robert Elliott & Eckhard Platen, 1999. "Hidden Markov Chain Filtering for Generalised Bessel Processes," Research Paper Series 23, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    7. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    8. Liu, Yufen & Cao, Wanrong & Li, Yuelin, 2022. "Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    9. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    10. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    11. Yang, Xiaochen & Yang, Zhanwen & Zhang, Chiping, 2023. "Numerical analysis of the Linearly implicit Euler method with truncated Wiener process for the stochastic SIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 1-14.
    12. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    13. H. A. Mardones & C. M. Mora, 2020. "First-Order Weak Balanced Schemes for Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 833-852, June.
    14. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Yang, Xu & Zhao, Weidong, 2018. "Finite element methods and their error analysis for SPDEs driven by Gaussian and non-Gaussian noises," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 58-75.
    17. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    18. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    19. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    20. Đorđević, Jasmina & Milošević, Marija & Šuvak, Nenad, 2023. "Non-linear stochastic model for dopamine cycle," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:1:y:1995:i:4:p:279-300:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.