IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v455y2023ics0096300323002801.html
   My bibliography  Save this article

Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization

Author

Listed:
  • Vignesh, D.
  • He, Shaobo
  • Banerjee, Santo

Abstract

This article proposes a discrete time fractional order three dimensional Rucklidge system with complex state variables. The dynamical nature and chaotic behavior exhibited by the Rucklidge system with real state variables and higher dimensional system derived from complex state variables are compared. The stability of the proposed system is analyzed at their equilibrium states by obtaining eigenvalues numerically. Chaotic dynamics exhibited by the system with real and complex variables are investigated employing different methods like bifurcation analysis and maximum Lyapunov exponents via the Jacobian matrix method. Nonlinear controllers are introduced for chaos synchronization of the subsystems of the proposed discrete time Rucklidge system with fractional order. The article further discusses the coexisting behavior of the attractors for the Rucklidge system of real state variables with coexisting bifurcation diagrams. The impact of the parameters on the system dynamics is demonstrated with a sequence of bifurcation diagrams for the simultaneous variation of two parameters.

Suggested Citation

  • Vignesh, D. & He, Shaobo & Banerjee, Santo, 2023. "Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization," Applied Mathematics and Computation, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323002801
    DOI: 10.1016/j.amc.2023.128111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323002801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    2. Cuimei Jiang & Shutang Liu & Chao Luo, 2014. "A New Fractional-Order Chaotic Complex System and Its Antisynchronization," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, October.
    3. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    4. Wang, Xia, 2009. "Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2208-2217.
    5. Ouannas, Adel & Khennaoui, Amina-Aicha & Odibat, Zaid & Pham, Viet-Thanh & Grassi, Giuseppe, 2019. "On the dynamics, control and synchronization of fractional-order Ikeda map," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 108-115.
    6. Chao Luo & Xingyuan Wang, 2013. "Chaos Generated From The Fractional-Order Complex Chen System And Its Application To Digital Secure Communication," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-23.
    7. Pakhare, Sumit S. & Bhalekar, Sachin & Gade, Prashant M., 2022. "Synchronization in coupled integer and fractional-order maps," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Cánovas, Jose S. & Rezgui, Houssem Eddine, 2023. "Revisiting the dynamic of q-deformed logistic maps," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    3. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    4. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    5. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2018. "Target-encirclement control of fractional-order multi-agent systems with a leader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 479-491.
    8. Wang, Yupin & Li, Xiaodi & Wang, Da & Liu, Shutang, 2022. "A brief note on fractal dynamics of fractional Mandelbrot sets," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    9. Li, Yuxing & Geng, Bo & Jiao, Shangbin, 2022. "Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    11. Balootaki, Mohammad Ahmadi & Rahmani, Hossein & Moeinkhah, Hossein & Mohammadzadeh, Ardashir, 2020. "On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Mohamed, Sara M. & Sayed, Wafaa S. & Said, Lobna A. & Radwan, Ahmed G., 2022. "FPGA realization of fractals based on a new generalized complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    14. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    15. Danca, Marius-F., 2022. "Fractional order logistic map: Numerical approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Maria Santos Bruzón & Gaetana Gambino & Maria Luz Gandarias, 2021. "Generalized Camassa–Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    17. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    18. Xin, Baogui & Peng, Wei & Kwon, Yekyung, 2020. "A discrete fractional-order Cournot duopoly game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    19. Saowaluck Chasreechai & Thanin Sitthiwirattham, 2019. "On Separate Fractional Sum-Difference Equations with n -Point Fractional Sum-Difference Boundary Conditions via Arbitrary Different Fractional Orders," Mathematics, MDPI, vol. 7(5), pages 1-16, May.
    20. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323002801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.