IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v455y2023ics0096300323002801.html
   My bibliography  Save this article

Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization

Author

Listed:
  • Vignesh, D.
  • He, Shaobo
  • Banerjee, Santo

Abstract

This article proposes a discrete time fractional order three dimensional Rucklidge system with complex state variables. The dynamical nature and chaotic behavior exhibited by the Rucklidge system with real state variables and higher dimensional system derived from complex state variables are compared. The stability of the proposed system is analyzed at their equilibrium states by obtaining eigenvalues numerically. Chaotic dynamics exhibited by the system with real and complex variables are investigated employing different methods like bifurcation analysis and maximum Lyapunov exponents via the Jacobian matrix method. Nonlinear controllers are introduced for chaos synchronization of the subsystems of the proposed discrete time Rucklidge system with fractional order. The article further discusses the coexisting behavior of the attractors for the Rucklidge system of real state variables with coexisting bifurcation diagrams. The impact of the parameters on the system dynamics is demonstrated with a sequence of bifurcation diagrams for the simultaneous variation of two parameters.

Suggested Citation

  • Vignesh, D. & He, Shaobo & Banerjee, Santo, 2023. "Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization," Applied Mathematics and Computation, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323002801
    DOI: 10.1016/j.amc.2023.128111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323002801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouannas, Adel & Khennaoui, Amina-Aicha & Odibat, Zaid & Pham, Viet-Thanh & Grassi, Giuseppe, 2019. "On the dynamics, control and synchronization of fractional-order Ikeda map," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 108-115.
    2. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    3. Chao Luo & Xingyuan Wang, 2013. "Chaos Generated From The Fractional-Order Complex Chen System And Its Application To Digital Secure Communication," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-23.
    4. Pakhare, Sumit S. & Bhalekar, Sachin & Gade, Prashant M., 2022. "Synchronization in coupled integer and fractional-order maps," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Cuimei Jiang & Shutang Liu & Chao Luo, 2014. "A New Fractional-Order Chaotic Complex System and Its Antisynchronization," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, October.
    6. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    7. Wang, Xia, 2009. "Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2208-2217.
    8. Cánovas, Jose S. & Rezgui, Houssem Eddine, 2023. "Revisiting the dynamic of q-deformed logistic maps," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    3. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    4. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    5. Rujira Ouncharoen & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2020. "Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    6. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    7. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    8. Wang, Yupin, 2023. "Fractional quantum Julia set," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    9. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    10. Peng, Yuexi & Liu, Jun & He, Shaobo & Sun, Kehui, 2023. "Discrete fracmemristor-based chaotic map by Grunwald–Letnikov difference and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    11. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    13. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    15. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Pakhare, Sumit S. & Bhalekar, Sachin & Gade, Prashant M., 2022. "Synchronization in coupled integer and fractional-order maps," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    18. Lei, Dong & Liang, Yingjie & Xiao, Rui, 2018. "A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 465-475.
    19. Li Wu & Yanjun Yang & Binggeng Xie, 2022. "Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example," Land, MDPI, vol. 11(7), pages 1-16, July.
    20. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323002801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.