IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p1009-d546144.html
   My bibliography  Save this article

Generalized Camassa–Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions

Author

Listed:
  • Maria Santos Bruzón

    (Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, 11510 Cádiz, Spain)

  • Gaetana Gambino

    (Department of Mathematics and Computer Science, University of Palermo, Via Archirafi, 9013 Palermo, Italy)

  • Maria Luz Gandarias

    (Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, 11510 Cádiz, Spain)

Abstract

In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the traveling-wave equations, which correspond to pulse and front solutions of the original GCH equations, respectively.

Suggested Citation

  • Maria Santos Bruzón & Gaetana Gambino & Maria Luz Gandarias, 2021. "Generalized Camassa–Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1009-:d:546144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/1009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/1009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Russo, Matthew & Choudhury, S. Roy, 2017. "Analytic solutions of a microstructure PDE and the KdV and Kadomtsev–Petviashvili equations by invariant Painlevé analysis and generalized Hirota techniques," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 228-239.
    2. Wang, Xia, 2009. "Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2208-2217.
    3. Kara, A.H. & Razborova, Polina & Biswas, Anjan, 2015. "Solitons and conservation laws of coupled Ostrovsky equation for internal waves," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 95-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vignesh, D. & He, Shaobo & Banerjee, Santo, 2023. "Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    2. Baoyong Guo & Huanhe Dong & Yong Fang, 2019. "Lump Solutions and Interaction Solutions for the Dimensionally Reduced Nonlinear Evolution Equation," Complexity, Hindawi, vol. 2019, pages 1-9, October.
    3. Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
    4. Wang, Xiu-Bin & Tian, Shou-Fu & Xua, Mei-Juan & Zhang, Tian-Tian, 2016. "On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 216-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1009-:d:546144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.