IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v440y2023ics0096300322007020.html
   My bibliography  Save this article

A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics

Author

Listed:
  • Abgrall, Rémi
  • Busto, Saray
  • Dumbser, Michael

Abstract

We introduce a simple and general framework for the construction of thermodynamically compatible schemes for the numerical solution of overdetermined hyperbolic PDE systems that satisfy an extra conservation law. As a particular example in this paper, we consider the general Godunov-Peshkov-Romenski (GPR) model of continuum mechanics that describes the dynamics of nonlinear solids and viscous fluids in one single unified mathematical formalism.

Suggested Citation

  • Abgrall, Rémi & Busto, Saray & Dumbser, Michael, 2023. "A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics," Applied Mathematics and Computation, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007020
    DOI: 10.1016/j.amc.2022.127629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ray, Deep & Chandrashekar, Praveen, 2017. "An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 257-286.
    2. Gassner, Gregor J. & Winters, Andrew R. & Kopriva, David A., 2016. "A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations," Applied Mathematics and Computation, Elsevier, vol. 272(P2), pages 291-308.
    3. Busto, S. & Río-Martín, L. & Vázquez-Cendón, M.E. & Dumbser, M., 2021. "A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firas Dhaouadi & Michael Dumbser, 2023. "A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations," Mathematics, MDPI, vol. 11(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    2. Anandan, Megala & Raghurama Rao, S.V., 2024. "Entropy conserving/stable schemes for a vector-kinetic model of hyperbolic systems," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    3. Zhizhuang Zhang & Xiangyu Zhou & Gang Li & Shouguo Qian & Qiang Niu, 2023. "A New Entropy Stable Finite Difference Scheme for Hyperbolic Systems of Conservation Laws," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    4. Boscheri, Walter & Tavelli, Maurizio, 2022. "High order semi-implicit schemes for viscous compressible flows in 3D," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    5. Saray Busto & Michael Dumbser & Laura Río-Martín, 2021. "Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
    6. Qiao, Dianliang & Lin, Zhiyang & Guo, Mingmin & Yang, Xiaoxia & Li, Xiaoyang & Zhang, Peng & Zhang, Xiaoning, 2022. "Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    7. Gaburro, Elena & Öffner, Philipp & Ricchiuto, Mario & Torlo, Davide, 2023. "High order entropy preserving ADER-DG schemes," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    8. Laura Río-Martín & Saray Busto & Michael Dumbser, 2021. "A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics," Mathematics, MDPI, vol. 9(18), pages 1-41, September.
    9. Li, Gang & Li, Jiaojiao & Qian, Shouguo & Gao, Jinmei, 2021. "A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    10. Hendrik Ranocha & Manuel Quezada Luna & David I. Ketcheson, 2021. "On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-26, December.
    11. David C. Del Rey Fernández & Mark H. Carpenter & Lisandro Dalcin & Stefano Zampini & Matteo Parsani, 2020. "Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier–Stokes equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-54, April.
    12. Michel-Dansac, Victor & Thomann, Andrea, 2022. "TVD-MOOD schemes based on implicit-explicit time integration," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    13. Busto, S. & Dumbser, M. & Río-Martín, L., 2023. "An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    14. Frolkovič, Peter & Žeravý, Michal, 2023. "High resolution compact implicit numerical scheme for conservation laws," Applied Mathematics and Computation, Elsevier, vol. 442(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.