A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Busto, S. & Río-Martín, L. & Vázquez-Cendón, M.E. & Dumbser, M., 2021. "A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes," Applied Mathematics and Computation, Elsevier, vol. 402(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Busto, S. & Dumbser, M. & Río-Martín, L., 2023. "An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
- Boscheri, Walter & Tavelli, Maurizio, 2022. "High order semi-implicit schemes for viscous compressible flows in 3D," Applied Mathematics and Computation, Elsevier, vol. 434(C).
- Han Veiga, Maria & Micalizzi, Lorenzo & Torlo, Davide, 2024. "On improving the efficiency of ADER methods," Applied Mathematics and Computation, Elsevier, vol. 466(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boscheri, Walter & Tavelli, Maurizio, 2022. "High order semi-implicit schemes for viscous compressible flows in 3D," Applied Mathematics and Computation, Elsevier, vol. 434(C).
- Michel-Dansac, Victor & Thomann, Andrea, 2022. "TVD-MOOD schemes based on implicit-explicit time integration," Applied Mathematics and Computation, Elsevier, vol. 433(C).
- Saray Busto & Michael Dumbser & Laura Río-Martín, 2021. "Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
- Abgrall, Rémi & Busto, Saray & Dumbser, Michael, 2023. "A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics," Applied Mathematics and Computation, Elsevier, vol. 440(C).
- Busto, S. & Dumbser, M. & Río-Martín, L., 2023. "An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
- Frolkovič, Peter & Žeravý, Michal, 2023. "High resolution compact implicit numerical scheme for conservation laws," Applied Mathematics and Computation, Elsevier, vol. 442(C).
More about this item
Keywords
incompressible and compressible Navier-Stokes equations; shallow water equations; finite element method; finite volume scheme; semi-implicit scheme on staggered unstructured meshes; ADER methodology; High-Performance Computing (HPC); Message-Passing Interface (MPI);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2316-:d:638937. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.