IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v272y2016ip2p291-308.html
   My bibliography  Save this article

A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations

Author

Listed:
  • Gassner, Gregor J.
  • Winters, Andrew R.
  • Kopriva, David A.

Abstract

In this work, we design an arbitrary high order accurate nodal discontinuous Galerkin spectral element type method for the one dimensional shallow water equations. The novel method uses a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, we show that combined with a special numerical interface flux function, the method exactly preserves the entropy, which is also the total energy for the shallow water equations. Finally, we prove that the surface fluxes, the skew-symmetric volume integrals, and the source term are well balanced. Numerical tests are performed to demonstrate the theoretical findings.

Suggested Citation

  • Gassner, Gregor J. & Winters, Andrew R. & Kopriva, David A., 2016. "A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations," Applied Mathematics and Computation, Elsevier, vol. 272(P2), pages 291-308.
  • Handle: RePEc:eee:apmaco:v:272:y:2016:i:p2:p:291-308
    DOI: 10.1016/j.amc.2015.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315009261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David C. Del Rey Fernández & Mark H. Carpenter & Lisandro Dalcin & Stefano Zampini & Matteo Parsani, 2020. "Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier–Stokes equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-54, April.
    2. Zhizhuang Zhang & Xiangyu Zhou & Gang Li & Shouguo Qian & Qiang Niu, 2023. "A New Entropy Stable Finite Difference Scheme for Hyperbolic Systems of Conservation Laws," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    3. Gaburro, Elena & Öffner, Philipp & Ricchiuto, Mario & Torlo, Davide, 2023. "High order entropy preserving ADER-DG schemes," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    4. Abgrall, Rémi & Busto, Saray & Dumbser, Michael, 2023. "A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Qiao, Dianliang & Lin, Zhiyang & Guo, Mingmin & Yang, Xiaoxia & Li, Xiaoyang & Zhang, Peng & Zhang, Xiaoning, 2022. "Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Anandan, Megala & Raghurama Rao, S.V., 2024. "Entropy conserving/stable schemes for a vector-kinetic model of hyperbolic systems," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    7. Li, Gang & Li, Jiaojiao & Qian, Shouguo & Gao, Jinmei, 2021. "A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Hendrik Ranocha & Manuel Quezada Luna & David I. Ketcheson, 2021. "On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-26, December.
    9. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:272:y:2016:i:p2:p:291-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.