IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2972-d684309.html
   My bibliography  Save this article

Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows

Author

Listed:
  • Saray Busto

    (Departamento de Matemática Aplicada a la Ingeniería Industrial, Universidad Politécnica de Madrid, José Gutierrez Abascal 2, 28006 Madrid, Spain)

  • Michael Dumbser

    (Laboratory of Applied Mathematics, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Laura Río-Martín

    (Laboratory of Applied Mathematics, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

Abstract

This paper presents a new family of semi-implicit hybrid finite volume/finite element schemes on edge-based staggered meshes for the numerical solution of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations in combination with the k − ε turbulence model. The rheology for calculating the laminar viscosity coefficient under consideration in this work is the one of a non-Newtonian Herschel–Bulkley (power-law) fluid with yield stress, which includes the Bingham fluid and classical Newtonian fluids as special cases. For the spatial discretization, we use edge-based staggered unstructured simplex meshes, as well as staggered non-uniform Cartesian grids. In order to get a simple and computationally efficient algorithm, we apply an operator splitting technique, where the hyperbolic convective terms of the RANS equations are discretized explicitly at the aid of a Godunov-type finite volume scheme, while the viscous parabolic terms, the elliptic pressure terms and the stiff algebraic source terms of the k − ε model are discretized implicitly. For the discretization of the elliptic pressure Poisson equation, we use classical conforming P 1 and Q 1 finite elements on triangles and rectangles, respectively. The implicit discretization of the viscous terms is mandatory for non-Newtonian fluids, since the apparent viscosity can tend to infinity for fluids with yield stress and certain power-law fluids. It is carried out with P 1 finite elements on triangular simplex meshes and with finite volumes on rectangles. For Cartesian grids and more general orthogonal unstructured meshes, we can prove that our new scheme can preserve the positivity of k and ε . This is achieved via a special implicit discretization of the stiff algebraic relaxation source terms, using a suitable combination of the discrete evolution equations for the logarithms of k and ε . The method is applied to some classical academic benchmark problems for non-Newtonian and turbulent flows in two space dimensions, comparing the obtained numerical results with available exact or numerical reference solutions. In all cases, an excellent agreement is observed.

Suggested Citation

  • Saray Busto & Michael Dumbser & Laura Río-Martín, 2021. "Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2972-:d:684309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Busto, S. & Río-Martín, L. & Vázquez-Cendón, M.E. & Dumbser, M., 2021. "A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    2. Dumbser, Michael & Casulli, Vincenzo, 2016. "A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier−Stokes equations with general equation of state," Applied Mathematics and Computation, Elsevier, vol. 272(P2), pages 479-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Busto, S. & Dumbser, M. & Río-Martín, L., 2023. "An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 437(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boscheri, Walter & Tavelli, Maurizio, 2022. "High order semi-implicit schemes for viscous compressible flows in 3D," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Busto, S. & Dumbser, M. & Río-Martín, L., 2023. "An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    3. Minhajul, & Zeidan, D. & Raja Sekhar, T., 2018. "On the wave interactions in the drift-flux equations of two-phase flows," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 117-131.
    4. Michel-Dansac, Victor & Thomann, Andrea, 2022. "TVD-MOOD schemes based on implicit-explicit time integration," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    5. Busto, S. & Río-Martín, L. & Vázquez-Cendón, M.E. & Dumbser, M., 2021. "A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    6. Abgrall, Rémi & Busto, Saray & Dumbser, Michael, 2023. "A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    7. Laura Río-Martín & Saray Busto & Michael Dumbser, 2021. "A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics," Mathematics, MDPI, vol. 9(18), pages 1-41, September.
    8. Frolkovič, Peter & Žeravý, Michal, 2023. "High resolution compact implicit numerical scheme for conservation laws," Applied Mathematics and Computation, Elsevier, vol. 442(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2972-:d:684309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.