IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v150y2020ics0167947320300803.html
   My bibliography  Save this article

Generalized Co-clustering Analysis via Regularized Alternating Least Squares

Author

Listed:
  • Li, Gen

Abstract

Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at https://github.com/reagan0323/CORALS.

Suggested Citation

  • Li, Gen, 2020. "Generalized Co-clustering Analysis via Regularized Alternating Least Squares," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300803
    DOI: 10.1016/j.csda.2020.106989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300803
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    2. Hongya Zhao & Debby D Wang & Long Chen & Xinyu Liu & Hong Yan, 2016. "Identifying Multi-Dimensional Co-Clusters in Tensors Based on Hyperplane Detection in Singular Vector Spaces," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-27, September.
    3. Neng Fan & Nikita Boyko & Panos M. Pardalos, 2010. "Recent Advances of Data Biclustering with Application in Computational Neuroscience," Springer Optimization and Its Applications, in: Wanpracha Chaovalitwongse & Panos M. Pardalos & Petros Xanthopoulos (ed.), Computational Neuroscience, chapter 0, pages 85-112, Springer.
    4. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    5. Gen Li & Jianhua Z. Huang & Haipeng Shen, 2018. "Exponential Family Functional data analysis via a low‐rank model," Biometrics, The International Biometric Society, vol. 74(4), pages 1301-1310, December.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    8. Eric C. Chi & Genevera I. Allen & Richard G. Baraniuk, 2017. "Convex biclustering," Biometrics, The International Biometric Society, vol. 73(1), pages 10-19, March.
    9. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    10. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
    2. Binhuan Wang & Lanqiu Yao & Jiyuan Hu & Huilin Li, 2023. "A New Algorithm for Convex Biclustering and Its Extension to the Compositional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 193-216, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    2. Ke, Baofang & Zhao, Weihua & Wang, Lei, 2023. "Smoothed tensor quantile regression estimation for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Mao, Xianpeng & Yang, Yuning, 2022. "Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    4. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    5. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    6. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    8. Liu, Zhongkai & Song, Rui & Zeng, Donglin & Zhang, Jiajia, 2017. "Principal components adjusted variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 134-144.
    9. Pi, J. & Wang, Honggang & Pardalos, Panos M., 2021. "A dual reformulation and solution framework for regularized convex clustering problems," European Journal of Operational Research, Elsevier, vol. 290(3), pages 844-856.
    10. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    11. Chakraborty, Saptarshi & Das, Swagatam, 2021. "On uniform concentration bounds for Bi-clustering by using the Vapnik–Chervonenkis theory," Statistics & Probability Letters, Elsevier, vol. 175(C).
    12. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    13. Lee, Seokho & Huang, Jianhua Z., 2013. "A coordinate descent MM algorithm for fast computation of sparse logistic PCA," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 26-38.
    14. Gong, Tingnan & Zhang, Weiping & Chen, Yu, 2023. "Uncovering block structures in large rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    17. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    18. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    19. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    20. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.